IMPLICIT MULTI-D SIMULATIONS OF STELLAR INTERIORS CONVECTION IN PULSATING STARS

Maxime Viallet Centre de Recherche d'Astrophysique de Lyon Ecole Normale Supérieure de Lyon

Collaborators : I. Baraffe, C. Mulet-Marquis, E. Leveque, R. Walder,, B. Freytag, C. Winisdoerffer

OUTLINE

- Astrophysical motivation
- Code description
- Test cases
- Stellar models (preliminary results)
- Conclusion

OUTLINE

Astrophysical motivation

- Code description
- Test cases
- Stellar models (preliminary results)
- Conclusion

ASTROPHYSICAL MOTIVATION IMPLICIT APPROACH

- Explicit schemes are prone to the well known CFL restriction on the time step •
- First order term : e.g. advection $\Delta t_{CFL} \sim \frac{h}{v}$ Second order term : e.g. diffusion $\Delta t_{CFL} \sim \frac{h^2}{k}$
- Two approaches •
 - splitting : explicit advection + implicit diffusion
 - "all in one": all implicit (advection + diffusion)
- Applications :
 - Convection in stellar envelope
 - Early phase of stellar evolution (link between the hydro phase of gravitational collapse and the hydrostatic phase of stellar evolution), rotation, late phase of stellar evolution (pre-SN stage) ٠

ASTROPHYSICAL MOTIVATION CONVECTION-PULSATION INTERACTION

- Cepheid stars :
 - Stars located in the instability strip of the HR diagram
 - Unstable radial pressure mode => kappa mechanism
- Problem : toward low $T_{\rm eff}$ linear stability analysis predicts unstable modes, in contradiction with observations
- Hypothesis : strong convection in cool stars damps the oscillation
- → Multi-D models are required

ASTROPHYSICAL MOTIVATION CEPHEIDS

- Characteristic timescales in the pulsating envelope :
 - Pulsation period ~ 10^6 s
 - Growth rate $\sim 10^9$ s
 - Convection ~ 10^4 s
- Fine spatial resolution is required
 - Stable explicit time-step : ≤ 10² s

OUTLINE

- Astrophysical motivation
- Code description
- Test cases
- Stellar models (preliminary results)
- Conclusion

CODE DESCRIPTION HYDRODYNAMIC EQUATIONS

- Navier-Stokes equations
 - Artificial viscosity
- Thermal diffusion :
 - Diffusion approximation : $k_r =$
- Realistic EOS & opacities :
 - Tabulated for stellar interior

 $\begin{aligned} \frac{\partial}{\partial t}\rho + \vec{\nabla}.(\rho\vec{v}) &= 0\\ \frac{\partial}{\partial t}\rho\vec{v} + \vec{\nabla}.(\rho\overline{v}\overline{v} - \overline{\tau})) &= -\vec{\nabla}P + \rho\vec{g}\\ \frac{\partial}{\partial t}\rho e + \vec{\nabla}.(\rho e\vec{v}) &= \epsilon_{\rm visc} - P\vec{\nabla}.\vec{v} - \vec{\nabla}.\vec{F}_r\\ \text{with} \quad \vec{F}_r &= -k_r\vec{\nabla}T \end{aligned}$

$$P = P(\rho, e)$$
 $T = T(\rho, e)$ $\kappa = \kappa(\rho, T)$

$$=\frac{4acT^3}{3\kappa\rho}$$

CODE DESCRIPTION SPATIAL DISCRETIZATION

• 2.5D :

- Spherical geometry with axial symmetry (r, θ)
- Finite volume discretization
- Staggered grid
 - Scalar values (**p**, e) are defined at cell center
 - Vector components are defined at the corresponding cell boundaries
- Extension to 3D planned in the future

	14.3
•	
T	
	•

CODE DESCRIPTION SPATIAL & TEMPORAL DISCRETIZATION

- Flux are computed at cell interfaces
 - Values at interface are computed with an upwind interpolation scheme (Van Leer 2^d order)
- Time marching scheme :
 - $\beta = 1/2$: Crank-Nicholson (2^d order)

 $\Delta q + < R(q) >= 0$ with $< R >= \beta R^{n+1} + (1 - \beta) R^n$

CODE DESCRIPTION IMPLICITTIME MARCHING SCHEME

- Implicit scheme : going from time step n to time step n+1 involves the resolution of a nonlinear system of equations
 - Newton-Raphson iteration
- Linear system inversion :
 - Direct method (LU decomposition) with MUMPS (MUltifrontal Massively Parallel sparse direct Solver)

•
$$U^{(0)} = U^n$$
 $J = \frac{\partial D}{\partial U}$
• $\delta U^{(k)} = -J^{-1} \times D(U^{(k)})$
 $U^{(k+1)} = U^{(k)} + \delta U^{(k)}$
until $\max(\frac{\delta U^{(k)}}{U^{(k)}}) \le \epsilon$
• $U^{n+1} = U^{(k)}$

OUTLINE

- Astrophysical motivation
- Code description

• Test cases (cartesian + constant γ)

- Stellar models
- Conclusion

TEST CASES OSCILLATING ENTROPY BUBBLE

- Setup (see Dintrans & Brandenburg 2004) :
 - Cartesian domain : [-1,1]x[0,1]
 - Stable stratified isothermal atmosphere $(g=1, c_s=1)$
 - No thermal diffusion, constant viscosity $v=5\times10^{-4}$
 - Entropy perturbation at z=0.8 (in hydrostatic equilibrium)

TEST CASES OSCILLATING ENTROPY BUBBLE

Resolution : 50² Time : 50

B.C.: $u_z = 0$ at z=0,1periodic conditions at x=-1,1

OSCILLATING ENTROPY BUBBLE ANALYSIS

- Bubble oscillations excites gravity modes
- Non-exact hydrostatic equilibrium excites sound waves
- The problem is fully analytic, eigenmodes (n,l) and eigenfrequencies are known
 - Vertical sound waves (I=0): $\omega_n = (n+1)\pi P \le 2$
 - Gravity modes : $\omega_{l,n} \leq N \sim 0.82 \quad P \geq 7.6$
- Two physical processes with separate time scales => good lab for testing different choices of Δt

ENTROPY BUBBLE, 50X50,T=50ACOUSTIC MODES ($\ell = 0$)

 $\rho u_z(t, x, z) \longrightarrow \rho \hat{u}_z(\omega, l, z)$ Radial sound waves have I=0 $\Delta \omega$ =0.125 (FFT resolution) $\omega_m = \pi/\Delta t$ (Nyquist frequency)

 $\Delta t=0.04$ cfl=1 $\omega_m=24\pi$ CORRECT

INCORRECT

ENTROPY BUBBLE 150X150,T=200 **GRAVITY MODES**

 $\Delta \omega = 0.0314$ $\omega_m = 2\pi$ $\Delta t=0.5$ cfl=37

Method : projection of the velocity field on the anelastic eigenvectors ($\Psi_{l,n}$) (with pulsation $\omega_{l,n}$) (see Dintrans & Brandenburg 2004)

I=2, n=0 8.0×10 4×10 6.0×10" Projection coefficient Projection coefficient transform transform 0.6 0.8 0.4 0.6 Fourier ⁻ Fourier 4×10 4×10* |=|, n=|

I=2, n=1

I = I, n = 0

OSCILLATING ENTROPY BUBBLE SUMMARY

- The code reproduces correctly the waves content of the problem
- Time-step should be tuned on the physical process one is interested to
- Here since sound waves are "pollution", one can use larger time step than the characteristic sound wave timescale
 - But loss of accuracy ...

TEST CASES RAYLEIGH-BENARD CONVECTION

- Setup :
 - Cartesian domain : [-0.5,0.5]×[0,0.5]
 - Stratified atmosphere (g=1) : polytropic state with index m $ho \propto T^m$ (m>-1)
 - Unstable for $m \leq 3/2$
 - Entropy perturbation at z=0.25 to drive the convective instability
 - Viscosity $\mathbf{v} = 5 \times 10^{-4}$, conductivity $k = 10^{-2}$, Ra ~ 10^{4-5}
 - Flux is imposed at the lower/upper boundaries, horizontal : periodic conditions

RAYLEIGH-BENARD CONVECTION

• One has :
$$rac{
abla_{
m rad}=1/(m+1)}{
abla_{
m ad}=1-1/\gamma=0.4}$$

• One expects $\frac{F_{\text{rad}}}{F_{\text{tot}}} = \frac{\nabla_{\text{ad}}}{\nabla_{\text{rad}}} = 0.4(m+1)$

(see Brandenburg et al. 2004)

- $m=1 : F_{conv}/F_{tot} = 20 \%$
- $m=0: F_{conv}/F_{tot} = 60 \%$
- m=-0.9 : $F_{conv}/F_{tot} = 96 \%$

RAYLEIGH-BENARD CONVECTION

- Relaxation toward a quasi-steady state : ~150 time units
- Expected F_{conv}/F_{tot} ratios are recovered

OUTLINE

- Astrophysical motivation
- Code description
- Test cases
- Stellar models
- Conclusion

STELLAR MODELS HOT STABLE MODEL

• Teff = 7500 K, M = 5 M
$$_{\odot}$$
, log(L/L $_{\odot}$) = 3

- Initial model extends to the photosphere
- Initial grid is adapted
- Almost fully radiative model
- Strongly stratified : $\rho_{top} \sim 10^{-4} \text{g cm}^{-3}$, $\rho_{bottom} \sim 10^{-10} \text{ g cm}^{-3}$

STELLAR MODELS HOT STABLE MODEL

Grid : 150^2 domain : $[0.4, 1] \times [\pi/3, 2\pi/3]$

- $\Delta t_{CFL} \sim 30$ s, mean $\Delta t \sim 10^4$ s
- CFL: 80 => 1000, mean value ~400

Boundary conditions : $r=R_{out}$: stress-free, last cells radiate as σT^4 $r=R_{in}$: stress-free, entering flux is imposed

STELLAR MODELS HOT MODEL

- Model not fully thermally relaxed : $\tau_{\rm KH} \sim 10^5$ days
- V_{conv}/c_s : 0.02 (MLT:0.05)
- Eddies turnover timescale : 10^{5} - 10^{7} s (MLT : 10^{5} s)
- Eddies size : $5-6 \times 10^{10} \text{ cm} \sim 5 \text{ H}_{\text{p}} (\text{MLT} : 1.7)$
- Convective fluxes : 3x10⁻⁴ F_{tot} (MLT : 2x10⁻³)

STELLAR MODELS SUMMARY

- First computations of stellar models are promising
- Influence of the time step ?
 - Should be tuned on the eddies turn-over time-scale ?
- Probable issues for the cepheid problem :
 - Relaxation of the initial model ?
 - How to start the convection ?
 - Pulsation : how to deal with the moving photosphere (outer boundary condition) ? Is a radially moving grid necessary ?

CONCLUSION

- Code has been validated on test cases
 - High CFL number can be used to catch physics working on larger time-scales
 - The code can handle strong convection (at least in a simple setup)
- Computation of stellar models just started
 - Numerical simulations of cepheids promise to be challenging
- Yet no reason to put our implicit approach into questions, but one should carefully check the accuracy of the results

