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ASTROPHYSICAL MOTIVATION
IMPLICIT APPROACH

• Explicit schemes are prone to the well known CFL restriction on the time step

• First order term : e.g. advection

• Second order term : e.g. diffusion

• Two approaches

• splitting : explicit advection + implicit diffusion

• “all in one” : all implicit (advection + diffusion)

• Applications : 

• Convection in stellar envelope

• Early phase of stellar evolution (link between the hydro phase of gravitational collapse and the 
hydrostatic phase of stellar evolution), rotation, late phase of stellar evolution (pre-SN stage)

∆tCFL ∼
h

v

∆tCFL ∼
h2

k



ASTROPHYSICAL MOTIVATION
CONVECTION-PULSATION INTERACTION

• Cepheid stars :

• Stars located in the instability strip of the HR diagram

• Unstable radial pressure mode => kappa mechanism

• Problem :  toward low Teff, linear stability analysis predicts 
unstable modes, in contradiction with observations

• Hypothesis : strong convection in cool stars damps the 
oscillation

➡Multi-D models are required



ASTROPHYSICAL MOTIVATION
CEPHEIDS

• Characteristic timescales in the 
pulsating envelope :

• Pulsation period ~ 106 s

• Growth rate ~ 109 s

• Convection ~ 104 s

• Fine spatial resolution is required

• Stable explicit time-step : ≲102 s
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CODE DESCRIPTION
HYDRODYNAMIC EQUATIONS

• Navier-Stokes equations

• Artificial viscosity 

• Thermal diffusion :

• Diffusion approximation :

• Realistic EOS & opacities :

• Tabulated for stellar interior

∂

∂t
ρ + #∇.(ρ#v) = 0

with

P = P (ρ, e) T = T (ρ, e) κ = κ(ρ, T )

!Fr = −kr
!∇T

∂

∂t
ρ#v + #∇.(ρvv − τ)) = −#∇P + ρ#g

kr =
4acT 3

3κρ

∂

∂t
ρe + #∇.(ρe#v) = εvisc − P #∇.#v− !∇.!Fr



CODE DESCRIPTION
SPATIAL DISCRETIZATION

• 2.5D :

• Spherical geometry with axial symmetry (r,θ)

• Finite volume discretization

• Staggered grid

• Scalar values (ρ, e) are defined at cell center

• Vector components are defined at the 
corresponding cell boundaries 

• Extension to 3D planned in the future



• Flux are computed at cell interfaces

• Values at interface are computed with an upwind 
interpolation scheme (Van Leer 2d order )

• Time marching scheme :

• β=1/2 : Crank-Nicholson (2d order) 

CODE DESCRIPTION
SPATIAL & TEMPORAL DISCRETIZATION

< R >= βRn+1 + (1− β)Rnwith
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∆q+ < R(q) >= 0



• Implicit scheme : going from time step n to 
time step n+1 involves the resolution of a 
nonlinear system of equations

• Newton-Raphson iteration

• Linear system inversion :

• Direct method (LU decomposition) with 
MUMPS 
(MUltifrontal Massively Parallel sparse direct 
Solver)

CODE DESCRIPTION
IMPLICIT TIME MARCHING SCHEME 

U (0) = Un J =
∂D

∂U

U (k+1) = U (k) + δU (k)

max(
δU (k)

U (k)
) ≤ εuntil

Un+1 = U (k)

δU (k) = −J−1 ×D(U (k))
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TEST CASES
OSCILLATING ENTROPY BUBBLE

In
cr

ea
sin

g 
en

tr
op

y

• Setup (see Dintrans & Brandenburg 2004) :

• Cartesian domain : [-1,1]x[0,1]

• Stable stratified isothermal atmosphere (g=1, cs=1)

• No thermal diffusion, constant viscosity ν=5x10-4

• Entropy perturbation at z=0.8 (in hydrostatic equilibrium)



TEST CASES
OSCILLATING ENTROPY BUBBLE

Resolution : 502

Time : 50
B.C. : uz = 0 at z=0,1

periodic conditions at x=-1,1



OSCILLATING ENTROPY BUBBLE
ANALYSIS

• Bubble oscillations excites gravity modes

• Non-exact hydrostatic equilibrium excites sound waves

• The problem is fully analytic, eigenmodes (n,l) and eigenfrequencies are 
known

• Vertical sound waves (l=0): 

• Gravity modes : 

• Two physical processes with separate time scales => good lab for testing 
different choices of ∆t

ωl,n ≤ N ∼ 0.82

ωn = (n + 1)π P ≤ 2

P ≥ 7.6



ENTROPY BUBBLE, 50X50, T=50
ACOUSTIC MODES (ℓ=0)

cfl=1 cfl=12

∆ω=0.125 (FFT resolution)

ωm=24π ωm=2π∆t=0.04 ∆t=0.5

ωm=π/∆t (Nyquist frequency)

ρuz(t, x, z) −→ ˆρuz(ω, l, z) Radial sound waves have l=0

CORRECT INCORRECT



cfl=37 ∆ω=0.0314 ωm=2π∆t=0.5

ENTROPY BUBBLE 150X150, T=200
GRAVITY MODES

Method : projection of the velocity field on the anelastic eigenvectors (Ψl,n) (with pulsation ωl,n)
(see Dintrans & Brandenburg 2004)

l=1, n=0

l=1, n=1

l=2, n=0

l=2, n=1

Pr
oj

ec
tio

n 
co

ef
fic

ie
nt

Fo
ur

ie
r 

tr
an

sf
or

m

Pr
oj

ec
tio

n 
co

ef
fic

ie
nt

Fo
ur

ie
r 

tr
an

sf
or

m



OSCILLATING ENTROPY BUBBLE
SUMMARY

• The code reproduces correctly the waves content of the problem

• Time-step should be tuned on the physical process one is interested to

• Here since sound waves are “pollution”, one can use larger time step than 
the characteristic sound wave timescale

• But loss of accuracy ...



• Setup :

• Cartesian domain : [-0.5,0.5]x[0,0.5]

• Stratified atmosphere (g=1) : polytropic state with index m 

• Unstable for m≤3/2

• Entropy perturbation at z=0.25 to drive the convective instability

• Viscosity ν = 5x10-4, conductivity k = 10-2, Ra ~ 104-5

• Flux is imposed at the lower/upper boundaries, horizontal : periodic conditions

TEST CASES
RAYLEIGH-BENARD CONVECTION

ρ ∝ Tm (m>-1)



• One has :

• One expects
 
(see Brandenburg et al. 2004)

• m=1 : Fconv/Ftot = 20 %

• m=0 : Fconv/Ftot = 60 %

• m=-0.9 : Fconv/Ftot = 96 %

RAYLEIGH-BENARD CONVECTION

502

∇rad = 1/(m + 1)
∇ad = 1− 1/γ = 0.4

Frad

Ftot
=
∇ad

∇rad
= 0.4(m + 1)



• Relaxation toward a quasi-steady state : ~150 time units

• Expected Fconv/Ftot ratios are recovered

RAYLEIGH-BENARD CONVECTION

m=1 m=0 m=-0.9

grid : 502

∆t=0.25,  CFL=80∆t=1.2,  CFL=170 ∆t=1.8,  CFL=300

Ftot = Frad + Fconv + Fkin + Fvisc

Frad

Fconv
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STELLAR MODELS
HOT STABLE MODEL

• Teff = 7500 K, M = 5 M☉, log(L/L☉) = 3

• Initial model extends to the 
photosphere

• Initial grid is adapted

• Almost fully radiative model

• Strongly stratified : ρtop ~ 10-4g cm-3 , 
ρbottom ~ 10-10 g cm-3



STELLAR MODELS
HOT STABLE MODEL

• ∆tCFL ~ 30 s, mean ∆t ~ 104 s

• CFL: 80 => 1000, mean value ~400 

Grid :1502 domain : [0.4,1]x[π/3,2π/3]

Boundary conditions :
r=Rout : stress-free, last cells radiate as σ T4

r=Rin : stress-free, entering flux is imposed



STELLAR MODELS
HOT MODEL

• Model not fully thermally relaxed :τKH ~ 105 days

• Vconv/cs :  0.02 (MLT : 0.05)

• Eddies turnover timescale : 105-107 s (MLT : 105 s)

• Eddies size :  5-6x1010 cm ~ 5 Hp (MLT : 1.7)

• Convective fluxes : 3x10-4 Ftot (MLT : 2x10-3)

R/R★

R/R★



STELLAR MODELS
SUMMARY

• First computations of stellar models are promising

• Influence of the time step ? 

• Should be tuned on the eddies turn-over time-scale ?

• Probable issues for the cepheid problem :

• Relaxation of the initial model ?

• How to start the convection ?

• Pulsation : how to deal with the moving photosphere (outer 
boundary condition) ? Is a radially moving grid necessary ?



CONCLUSION

• Code has been validated on test cases

• High CFL number can be used to catch physics working on larger 
time-scales

• The code can handle strong convection (at least in a simple setup)

• Computation of stellar models just started

• Numerical simulations of cepheids promise to be challenging

• Yet no reason to put our implicit approach into questions, but one 
should carefully check the accuracy of the results



THANKS


