Recent Advances in Vislt: AMR Streamlines and Query-driven Visualization Gunther H. Weber Lawrence Berkeley National Laboratory / UC Davis

- Richly featured visualization and analysis tool for large data sets
- Built for five use cases:
 - Data exploration
 - Visual debugging
 - Quantitative analysis
 - Presentation graphics
 - Comparative analysis
- Data-parallel client server model, distribution on per patch-basis
- Use of meta-data / contracts to reduce amount of processed data

Ideal basis for specialized AMR visualization tool replacement

ERSC

[Argon bubble subjected to shock Jeff Greenbough, LLNL]

[Logarithm of gas/dust density in Enzo star/galaxy simulation, Tom Abel & Matthew Turk, Kavli Institute]

Vislt and AMR Data

- Supported as "first-class" data type
- Handled via "ghost-cells": Coarse cells that are refined are marked "ghost" in the lower level
- Work on rectilinear grids and skip ghost cells or "remove" results produced in ghost cells later on

ERSC

Recent Advances in VisIt: AMR Streamlines and Query-driven Visualization

Streamlines for Adaptive Mesh Refinement Data

Joint work with Eduard Deines¹, Christoph Garth¹, Brian Van Straalen², Sergey Borovikov³, Daniel F. Martin² and Ken I. Joy^{1,2}

¹ Institute for Data Analysis and Visualization, University of California, Davis
 ² Computational Research Division, Lawrence Berkeley National Laboratory
 ³ Department of Physics, University of Alabama, Huntsville

Motivation

- Vislt streamlines one year ago:
 - Streamlines cannot cross boundaries between multiple grids of multi-block data
- More recently:
 - Fully parallel implementation that "hands off" streamlines between grids [Pugmire et al, 2009]
 - Publicly available in Vislt 1.11 (enhancements in upcoming 1.12 release)
- However:

ERSC

Streamlines still not "AMR" aware (refined cells)

Motivating Example – Vortex Core Merger

Stay in Level 0

ERSC

"Descend" into AMR hierarchy

Integral Curves and Steamlines – Definition

- Integral curves in visualization
 - Streamlines
 - Streaklines
 - Pathlines, etc.

ERSC

- Essential visualization tool providing intuitive understanding of flow data
- Obtained Numerical solution of ordinary differential equation

S(t)' = F(S(t)) or S(t)' = F(S(t),t)

Challenges Posed by Block-structured AMR data sets

- Multiple refinement levels
- Several domains represented as rectilinear grids
- Data in finer levels replaces data in coarser levels
- Cell-centered data

Proper Handling of AMR Hierarchies (1/2)

- 1. Evaluate vector field at each integration step in finest available level:
 - Discontinuity handling by the integration method
 - Higher number of integration steps

- Higher error after passing the discontinuity (level boundary)
- All domains needed during the integration

Proper Handling of AMR Hierarchies (2/2)

- 2. Stop at domain boundaries and restart computation in next domain:
 - Reduces error

- Reduces number of integration steps
- Process curve integration in each domain separately (parallel processing possible)
- Intersection point calculation with domain bounding box using Newton method

Proper Handling of Cell-centered Data

Dual-mesh representation

Proper handling of cell-centered data

"Gaps" between domains

ERSC

Dual grid using "ghost" cells

Algorithm

- Start in domain in finest possible level
- Build dual mesh
- Advance integration step
- If step inside nested domains (finer level)
 - Intersect with the bounding box of the finer domain
 - Restart the algorithm inside the finer domain
- If outside domain
 - Intersect with the domain bounding box
 - Restart in the next domain

Solar System Simulation

- Interaction of solar wind with interstellar medium
- Termination shock
 - First boundary of solar system
 - End of strong sphere of influence of solar wind
- Heliopause
 - Collision of solar wind with local interstellar medium
 - End of direct sphere of influence of solar wind

Solar System Simulation

- Computational region about 1000 AU
- Plasma fluctuations 0.01 AU
- To fine to be modeled without AMR
- AMR Mesh
 - Five refinement levels

ERSC

20037 domains

Interplanetary Magnetic Field Lines

Parker Spiral

ERSC

Past the Termination Shock

Interstellar Magnetic Field Lines

Two Incompressible Viscous Vortex Cores

Two distinct vortex rings Merged into a single flow structure

Future work

- Distribute in future Vislt version
- Proper handling of:
 - Embedded boundaries

- Mapped grids
- Parallelize
- Pathlines, etc.

Analysis of Large-Scale Laser Wakefield Particle Acceleration Simulation

Joint work with

Oliver Rübel^{1,2,3}, Prabhat¹, Kesheng Wu¹, Hank Childs¹, Jeremy Meredith⁴, Cameron G. R. Geddes⁵, Estelle Cormier-Michel⁵, Sean Ahern⁴, Peter Messmer⁶, Hans Hagen², Bernd Hamann^{3,2,1} and E. Wes Bethel^{1,3}

¹ Computational Research Division, Lawrence Berkeley National Laboratory
 ² Internatl. Research Training Group 1131, TU Kaiserslautern, Germany
 ³ Institute for Data Analysis and Visualization, University of California, Davis
 ⁴ Oak Ridge National Laboratory
 ⁵ LOASIS program of Lawrence Berkeley National Laboratory
 ⁶ Tech-X Corporation

Motivation: Laser Wakefield Particle Acceleration

[Image courtesy of http://worldwakesurfingchampionships.com]

Advantages: Can achieve electric fields thousands of times stronger than in conventional accelerators

Can achieve high acceleration over very short distance.

Laser Wakefield Particle Acceleration

Simulation

- Performed over 2D and 3D domains using the VORPAL code
- Simulations restricted to window covering only a plasma subset in x direction in beam vicinity
- Simulation window moves along local x axis

ERSC

• Produces particle and field data (at typically 40-100 timesteps)

Particle data

• Scattered data with particle location, momentum and identifier

~ 0.4*10⁶ – 30*10⁶ (in 2D) and ~80*10⁶ – 200 *10⁶ (in 3D) per time step

→ Total size: \sim 1.5GB – >30GB (in 2D) and \sim 100GB – >1TB (in 3D)

Field data

- Electric field, magnetic field, and RhoJ (regular grid)
 - Resolution: Typically ~0.02-0.03µm longitudinally, and ~ 0.1-0.2µm transversely
 - Total size: ~3.5GB >70GB (in 2D) and ~200GB >2TB (in 3D)

System Design

References:

- VisIt is available from https://wci.llnl.gov/codes/visit/
- FastBit is available from https://codeforge.lbl.gov/projects/fastbit
- H5Part is available from http://h5part.web.psi.ch/ or http://vis.lbl.gov/Research/AcceleratorSAPP/

Data Selection via FastBit

Value	b ₀	b ₁	b ₂	b ₃	b ₄	b ₅
0	1	0	0	0	0	0
1	0	1	0	0	0	0
5	0	0	0	0	0	1
3	0	0	0	1	0	0
1	0	1	0	0	0	0
2	0	0	1	0	0	0
4	0	0	0	0	1	0
	=0	=1	=2	=3	=4	=5

• Use FastBit to accelerate:

Computation of conditional histograms for parallel coordinate rendering

- Multi-dimensional threshold queries for particle of interest identification
- ID-queries for tracing of particles over time:

ERSC

Reference: K. Wu, E. Otoo, and A. Shoshani, "Compressing bitmap indexes for faster search operations", ACM Transactions on Database Systems, vol 31, pp. 1-38, 2006

Introduction to Parallel Coordinates

min

Introduction to Parallel Coordinates, cont.

Advantages:

Parallel display of many data dimensions Easy interface for data thresholding Immediate feedback during data selection

ERSC

Disadvantages:

Order dependent visualization Clutter, Occlusion Comp. complexity proportional to data size

Histogram-based Parallel Coordinates

Reference: M. Novotny and H. Hauser, "Outlier-preserving focus+context visualization in parallel coordinates," *IEEE Transactions on Visualization and Computer Graphics,* vol. 12, no. 5, pp. 893-900. 2006.

Histogram-based Parallel Coordinates cont.

Recent Advances in Vislt: AMR Streamlines and Query-driven Visualization

Histogram-based Parallel Coordinates, cont.

• Histograms computed on request:

ERSC

- Rendering of data subsets using histograms
- Close zoom-ins and smooth drill-downs into the data
- Rendering with arbitrary number of bins
- Support adaptively binned histograms:
 - More accurate representation in lower-level-of-detail views

Recent Advances in Vislt: AMR Streamlines and Query-driven Visualization

Beam Selection and Assessment

Recent Advances in Vislt: AMR Streamlines and Query-driven Visualization

Beam Formation

Recent Advances in VisIt: AMR Streamlines and Query-driven Visualization

Beam Refinement

.....

3D Analysis Example

.....

ERSC

Recent Advances in VisIt: AMR Streamlines and Query-driven Visualization

Laser Wakefield Acceleration Simulations – Conclusions and Future Work

Conclusions

- Rapid knowledge discovery from large, complex, multivariate, time-varying data
- New approach for quickly generating histogram-based parallel coordinates
- Case study on how system can be used to analyze Laser Wakefield particle acceleration data effectively

• Future Work

- Distribute in public Vislt version (1.12)

- Support for more file formats, e.g., particles in Chombo files
- Explore parallelizing most expensive system parts
- Improve integration of field and particle data
- Couple with other traditional data analysis methods, e.g., clustering

Acknowledgements

This work was supported by

- Director, Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) program's Visualization and Analytics Center for Enabling Technologies (VACET).
- National Energy Research Scientific Computing Center, supported by Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

• We would like to thank

Members of the Vislt team

- Members of VACET
- Members of LBNL Vis Group
- Members of LBNL Center for Computational Sciences and Engineering

Questions?

Additional Slides

Vislt Concepts (1/2)

- Databases: Implementation of various file formats, e.g., Chombo, Boxlib, Enzo, FLASH, ...
- Plots: Display data on screen (volume rendering, pseudocolor, isosurface, vector glyphs)

 Operators: Filter data before it is displayed (slice, isosurface, clip, displace, ...)

Vislt Concepts (2/2)

Expressions:

- Create new variables from existing ones via arithmetic expressions: +, -, *, /, dot product, cross product, ...
- Conditionals and comparisons

- Import variables from different time steps or simulations
- Other operations: image processing (smoothing), connected components of isosurfaces, ...
- **Picking:** Get information (value, location in mesh) for a given "point" in a visualization
- Queries: High-level information (area, volume, integral of variable, number of connected components, ...) coupled with ability to create curve of quantity over time

Vislt Capabilities

- Meshes: rectilinear, curvilinear, unstructured, point, AMR
- Data: scalar, vector, tensor, material, species
- Dimension: 1D, 2D, 3D, time varying

ERSC

- Rendering (~15): pseudocolor, volume rendering, hedgehogs, glyphs, mesh lines, etc...
- Data manipulation (~40): slicing, contouring, clipping, thresholding, restrict to box, reflect, project, revolve, ...
- File formats (~85)
- Derived quantities: >100 interoperable building blocks

+,-,*,/, gradient, mesh quality, if-then-else, and, or, not

- Many general features: position lights, make movie, etc
- Queries (~50): ways to pull out quantitative information, debugging, comparative analysis

Vislt's Parallelized Client-Server Architecture.

- Client-server
 observations:
 - Good for remote visualization
 - Leverages available resources
 - Scales well
 - No need to move data

Vislt and AMR Data

- Supported as "first-class" data type
- Vislt understands:
 - Nesting of patches / Boundaries between patches
- Strategy:
 - Each patch is processed separately
 - After reading data, subsequent passes to:
 - Identify coarse elements that are refined and mark them as "ghost"
 - Create ghost layers around outer boundaries (needs work)
 - Work on rectilinear grids and skip ghost cells or "remove" results produced in ghost cells later on
- UI:
 - Color by patch, color by level

- Remove / show patches, levels
- Have appropriate info returned for picks

