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I. Abstract

We discuss the self-consistent time-dependent numerical 
boundary conditions for the magnetohydrodynamic (MHD) 
simulation to study the solar and laboratory plasma dynamics. It 
is well known that these plasma flows cover from the sub-sonic 
and sub-Alfvénic to super-Alfvénic region. Hence the 
characteristic boundary conditions must be used because the 
information propagating according to these characteristics will 
affect the solutions.  To illustrate the importance of this set of 
boundary conditions, two examples are presented; one for solar 
plasma which is to study the energy and magnetic flux transport 
from the sub-photosphere to the corona, and the other one 
concerns laboratory plasma flow for the investigation of the sub- 
Alfvénic inlet boundary conditions for an MHD nozzle.



II. Mathematical Model

The governing equations are a set of conservation laws of mass, 
momentum, and energy.  In addition, the magnetic induction 
equation, resulting from Maxwell’s equation, is included to 
account for the nonlinear interactions between the plasma flows 
and magnetic field.  We have cast these governing equations in a 
spherical coordinate for solar atmospheric dynamics and a 
cylindrical coordinate for MHD nozzle problem.



For convenience of development of a numerical model and characteristic boundary 
conditions, these equations are casted in a conservation form in spherical coordinates 
and cgs units.
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In these equations,  is the plasma mass density, vr , v, and v
 

are three components of the 
plasma flow velocity in spherical coordinates, Br , B

 

,and B

 

are the three components of 
magnetic field, p = RT is the plasma thermal pressure, with T and R being the 
temperature and universal gas constant, respectively, j is the electric current,  is the 
coefficients of the magnetic diffusion,      is the thermal conduction and QR is the 
radiation flux. q

q



III. Characteristic Boundary Conditions



Method of Characteristics
 A path in a two-dimensional plane used to transform partial differential equations into 

systems of ordinary differential equations is  called a characteristic. The method of  characteristics can be

 
used to solve first order PDE’s

Fundamentals:
Partial differential equation of two variables x and y.
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Region of Influence for Plasma Element

t

x

P

A B

= plasma element
u = flow velocity
c = wave speed

= pts affecting P

t

c tc t

x

u t

Time Step
t=

 x/2cmax

(Incompressible plasma moving at velocity u)



Surface Boundary Conditions
In order to accommodate the observations at the bottom boundary,

 

the evolutionary boundary 
conditions must be used, thus, the method of “projected” characteristics are used for the 
derivation of such boundary conditions. For a three-dimensional magnetohydrodynamic

 

problem, 
the governing equations have been cast in a vectoral

 

form,

where and are column vectors consisting of primary physical quantities such as, density, 
temperature and three components of velocity and magnetic field.

 

To obtain these 
characteristics on the boundary, we have chosen the unit normal on the boundary is along 
certain coordinates, e.g. along the z-direction (radial). Thus, the characteristics along the 
projected normal will be found in the z-t plane (r-t plane). For example, at z-t plane for a small 
time difference Δt the projected characteristics given by:

can be approximated by straight lines. (reference: S. T. Wu, USTC, 2007)
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The Projected Characteristics 
Straight Lines
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With their left-eigenvectors, the projected normal characteristic equations (i.e. compatibility equations) are :
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Projected Characteristic Equations



For the bottom boundary, if the eigenvalue

 

(i.e. wave speed) is negative, that means the 

boundary condition will be affected by computational domain, and

 

we have to use the 

compatibility equation to determine the physical parameter. The number of compatibility 

equations that have to use is determined by the number of negative eigenvalues. 

As an example, if           and                    , then only  will be negative. In 

this case, three out of eight physical parameters have to be determined by three compatibility 

equations, and five could be given or using compatibility equations to solve.  If relaxing the 

condition above to only                         , then      (note that this is two degenerated eigenvalues),

could be negative. In this case, five out of eight physical parameters 

have to be determined by five compatibility equations, and three

 

could be given or using 

compatibility equations to solve. 
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Projected Characteristic Equations



The set of evolutionary boundary conditions in spherical coordinates is:
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Numerical Methods
The numerical method we used is simple TVD Lax-Friedrichs

 

formulation. This scheme 
achieves the second order accuracy both temporally and spatially. To achieve second 
order temporal accuracy, the Hancock predictor step and corrector step are used.

Predictor Step:
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IV. Examples



IV.1. Solar Atmospheric Dynamics

•
 

Energy and Magnetic Flux Transport from the 
Sub-photosphere to the Corona

•
 

Solar Wind



To illustrate the usage of characteristic boundary, we 
use two techniques: 

(i

 

)

 

Test of Boundary Conditions
Three types of boundary conditions are tested:  

•

 

All fixed values (i.e. density, temperature, 
velocity, and magnetic field strength) at the 
lower boundary

•

 

Time –dependent boundary conditions using 
characteristics

•

 

Time-dependent boundary conditions using 
numerical procedures (i.e. linear 
extrapolation)

(ii)  Using observations together with characteristic 
boundary conditions at the lower boundary
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observed data which include line-of-sight 
magnetic field of active region CR2009, and transverse 
velocity field. The color contours show the line-of-sight 
magnetic field, and the black arrows the velocity field.



Pre-initial 3D magnetic field configuration. Inside the 
computational domain, it is a potential field derived 
from the line-of-sight GONG field.



An equilibrium magnetic field configuration after 
relaxation from the pre-initial state.



GONG’s
 

transverse velocity in red arrows and the 
MHD simulation transverse velocity without using 
GONG’s

 
velocity in blue arrows.
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The density (a) and temperature (b) are from the 
MHD equilibrium state with the GONG’s

 
observed 

velocity data.

Density Distribution
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The total current helicities
 

from the MHD equilibrium 
state (a) with the GONG’s

 
observed velocity data; 

(b) without the GONG’s
 

observed velocity data
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The total current from the MHD equilibrium state (a) 
with the GONG’s

 
observed velocity data; (b) without 

the GONG’s
 

observed velocity data.

Total Electric Field Distribution

-52.5

+52.5
Total Electric Field Distribution

-52.5

+52.5

(a) (b)



IV.1. Sub-Alfvenic inlet Boundary for an 
MHD Nozzle Flow
This simulation is performed using a 2 ½

 
D multi-block, Arbitrary Lagrangian

 Eulearin
 

(ALE), resistive single fluid MHD code (MACH 2:  Peterllin
 

et al. J., 
Comp. Phys. 1998, 104, 1, 48-71).  MACH 2 solves the mass, momentum and 
electron energy, ion energy, radiation energy density and magnetic induction 
equations in a fractional time-split manner for the flow variables.  The equations 
are closed with an ideal gas equation of state, Braginski

 
thermal conductivity 

and Spitzer resistivity are used.  The simulation was performed in two steps.  
Firstly, a steady vacuum field was established using MACH 2’s magnetic field 
diffusion solver.  The calculation was allowed to proceed until changes in 
values of test cells in the domain were less than ~ 10-4%.  Secondly, the flux 
was frozen into the domain by turning off the diffusion solver and allowing 
plasma to flow through the inlet.  To avoid sharp discontinuities at the inlet, the 
density and velocity were ramped up to the intended value over 1

 
s.



Description of the boundary condition to be tested

Three sets of boundary were tested in order to evaluate the necessity of using 
the characteristic boundary conditions.  These three cases are: In Case 1, 
characteristic boundary conditions.  By counting the characteristics, we have 
computed Bz

 

, Br

 

, and vr

 

using compatibility relations.  In Case 2, Bz

 

, Br

 

, and vr

 
are computed using first order extrapolation from the computational domain.  
Finally, in Case 3, Bz

 

and Br

 

are “frozen in”
 

from the calculation of the vacuum 
field and vr

 

is set to 0.0 



Magnetic Nozzle Description

The inlet flow parameters and geometry are designed such that the plasma will 
transition from sub-Alfvénic

 
to super-Alfvénic

 
inside the computational domain 

(cylindrical symmetry:  r & z).  See Figure 1.

Fig. 1.  Magnetic nozzle 
geometry showing (a) 
computational mesh, (b) 
computational block structure 
with blocks and boundaries 
labeled, and (c) initial 
magnetic field topology. 
Boundary (1), (2), (3-5), and 
(6) are the inlet, nozzle wall, 
exit, and axis of symmetry, 
respectively.  Plasma is fed 
through boundary (1) of Block 
I.  Blocks II and III are the 
expansion region of the 
nozzle.  Blocks IV and V 
enable modeling plasma 
plume expansion downstream 
of the nozzle.



Results

Our real goal is to make an assessment of whether or not the implementation of the 
computational boundary conditions is successful.  Numerical results indicate that the 
computed boundary conditions (Cases 1 and 2) are stable to small

 

perturbations, as the 
model persists until the plasma plume reaches the nozzle exit, around 4.5 ×10-4

 

s.  Case 
3, with all parameters specified, is unstable and crashes at 2.6 ×10-5

 

s.   In summary, we 
have noted that the computational boundary conditions (Case 1) gave results consistent 
with the extrapolation method (Case 2).  Results from Cases 1 and 2 gave qualitative 
results as expected.  The computational boundary conditions made

 

the numerical model 
marginally more stable than those using extrapolation.  Hard coding the boundary 
conditions caused the numerical model to crash, verifying that some flow properties must 
be computed based on interior conditions when some of the characteristic waves point 
out of the domain.



Case 1



Case 2



V. Concluding Remarks

We derive the compatibility equations using the method of projected 
characteristics for 3D spherical coordinate system for solar atmospheric 
dynamics study and cylindrical axisymmetric

 
MHD nozzle flows.  Some 

interesting findings can be summarized as follows:

1.
 

The characteristic boundary conditions have shown more stabel
 

than first 
order extrapolation for sub-Alfvénic

 
MHD nozzle inlet flows.

2.
 

To assure the self-consistent evolutionary solar plasma, characteristic 
boundary conditions are necessary.
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