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Heliospheric observations
•

 
Heliosheath expected to be turbulent [1], the result of upstream

 turbulence and disturbances (shock waves, pressure and density 
enhancements, structures, etc. [2]) being transmitted across and

 interacting with the heliospheric termination shock (HTS). 

•
 

A turbulent heliosheath has been observed downstream of the HTS [3], 
but the character of the turbulence is significantly different from that of 
the solar wind. 

•
 

48-sec averages of the downstream magnetic field B(t) analyzed by [3] 
reveal that the turbulence is isotropic, and each component has a 
Gaussian distribution. The distribution of 1-hour averages of the 
magnetic field B was also Gaussian in the heliosheath, unlike the log-

 normal distributions of B found in the supersonic solar wind. The 
Gaussian distribution indicates a scale invariance in the form of the 
magnetic field distribution. 

•
 

The second intriguing observation was that the turbulence was 
substantially compressible since the width of the 48-sec averages of B is 
greater than that for the components.
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•
 

Clearly MHD turbulence in the inner heliosheath is different from that 
upstream of the HTS in the supersonic solar wind. 

•
 

Since the character of the turbulence is different immediately downstream 
of the HTS, it suggests that “processing”

 
by the HTS plays an important 

role in modifying turbulent upstream fluctuations. 

•
 

There is little doubt that the subsonic, very hot plasma in the heliosheath 
will contribute to the distinctive turbulence observed by Voyager 1 but we 
need to understand the role of the HTS in providing the inner boundary or 
source for evolving turbulence in the heliosheath. 

•
 

Explore physics and implicit numerical problems of interaction of 
turbulence with shock waves – basic physics not as well understood as one 
would like.

•
 

Investigate the reaction of turbulence on shock structure.

•
 

On the basis of a linear model, we examine the transmission, 
amplification, and generation of turbulence by the HTS.

•
 

Put both together in simulations to examine assumptions and expectations



Structure of shock in response to 
upstream turbulence

Two-dimensional Burger's equation

Hypersonic approximation corresponds to weak shock approximation



Pressure

t=0

Structural evolution of a perpendicular shock front, including “turbulent 
broadening”

 
and “overshoots.”





N-wave interacting with upstream sinusoidal fluctuations

Pressure





MATHEMATICAL FORMULATION

•
 

The interaction of upstream waves with a shock wave has been 
investigated in several papers, some of the most important of 
which are those by McKenzie & Westphal [4], Scholer & Belcher 
[5], Achterberg et al. [6], and Vainio & Schlickeiser [7], Ribner [8] 

•
 

With the exception of [4] and [6], these papers all focus on the
 reduced 2D problem of a fast shock interacting with an Alfvén 

wave when what is really needed is the interaction of an upstream 
fully turbulent spectrum of fluctuations interacting with a 3D shock 
wave. 

•
 

This problem is prohibitively difficult analytically for the full MHD 
problem but it can be solved hydrodynamically.

•
 

Some numerical investigations: Balsara (supersonic interstellar 
turbulence), Jackson et al., Lele (hydrodynamics, aerodynamics),

 
…



MHD JUMP RELATIONS



MATHEMATICAL FORMULATION – cont.
•

 
In equations (1) -

 
(6), we use a single-fluid description for the solar 

wind plasma, essentially assuming that interstellar PUIs co-move 
with the solar wind flow. This is certainly a reasonable assumption. 
It is further straightforwardly estimated that the pressure 
contribution of PUIs in the far outer heliosphere far exceeds the 
thermal solar wind pressure (e.g., Zank et al., [9]), making for a 
high plasma beta state ahead of the HTS. Observations of pressure-

 balanced structures by Burlaga et al., [10] indicate the dominance 
of the PUI pressure in the outer heliosphere. 

•
 

Thus, the total pressure P
 

in the one-fluid model (1) -
 

(6) may be 
regarded as the PUI pressure. 

•
 

The adiabatic index γ
 

must therefore reflect the PUI distribution. γ
 can vary between 5/3 and 2 for PUIs.

•
 

For a bispherical PUI distribution, γ
 

= 5/3 whereas for an 
unscattered ring-beam distribution, γ

 
= 2. We will assume that 

because the scattering mfp is long, the PUI gas satisfies γ
 

= 2.



MATHEMATICAL FORMULATION – cont.
•

 
For a perpendicular shock wave, un ≠

 
0, Bn = 0, and the jump conditions 

are

•
 

Observe that if we use γ
 

= 2 and introduce P* = P + B2/8π
 

we immediately 
obtain

•
 

Structurally identical to the usual hydrodynamic jump conditions
 

with a 
magnetic field contribution to the total pressure P* (i.e., P* is the sum of 
the PUI and magnetic pressures). “Sound speed" for system is fast mode 
speed for waves propagating perpendicularly to the magnetic field



HIGH-BETA PLASMA/HYDRO. MODEL

•
 

Consider the interaction of fluctuations with oblique shock wave. 
Classical problem, beginning with Ribner [2] and McKenzie & 
Westphal [1]. 

•
 

Reconsider using a somewhat more general formulation which has 
advantage of indicating how to develop a non-linear model.

•
 

For simplicity, consider the interaction of entropy fluctuations
 with a shock wave. 
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HIGH-BETA PLASMA/HYDRO. MODEL



HIGH-BETA PLASMA/HYDRO. MODEL

•
 

Dispersion relation for hydrodynamics:

NB REMINDER: Recall that for this case P* = P + B2/8π



MATHEMATICAL FORMULATION – cont.
DOWNSTREAM

2
UPSTREAM

1
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x

2u

Let n denote the normal to the 
surface of discontinuity, defined by 

Suppose eventually that 



MATHEMATICAL FORMULATION – cont.

•
 

For a system of conservation laws

the Rankine-Hugoniot conditions are given by 



Non-steady R-H conditions with shock front deformation:

Yields the boundary condition:  0t u

And now impose linearity i.e., 

Five variable and 5 equations therefore well posed.



•
 

Recover standard R-H conditions 
in steady frame i.e., 

NB REMINDER: Recall that for this case P* = P + B2/8π



Consider simplest case of incident 
entropy wave:

Downstream: Excites acoustic 
and entropy-vorticity waves:

NB REMINDER: 
Recall that for this 
case P* = P + B2/8π



•
 

Linear analysis of deformed shock front equations assuming 
perturbed shock front amplitude small. Very clear analysis of 
transmission and excitation of downstream fluctuations. 

•
 

Continuity of frequency and transverse wave number across 
deformed shock yields downstream propagation angles for 
transmitted and excited fluctuations. 

•
 

Can validate calculation numerically.

•
 

Can impose upstream spectrum and calculate the downstream 
spectrum, ratio of compressive to incompressible fluctuations, 
distribution, anisotropy, amplification of incident turbulence.

•
 

Note the generation of magnetic field at the shock.



VORTICITY-ENTROPY WAVE/SHOCK 
INTERACTION: Simulations

Simulate a
 

two-dimensional interaction between a plane vorticity-entropy
 wave and a oblique

 
shock wave.

Shock wave parameters: M –
 

Mach number of upstream flow;
α

 
–

 
angle between shock wave and upstream flow.

Disturbed upstream flow:

where

k is the magnitude of the wavenumber vector
ψ1

 

denotes the angle
 

between the wavenumber vector and x
Av

 

and Ae

 

are intensity of velocity and density upstream of the shock wave.



Entropy wave Ae

 

= 0.025, α
 

= 90°, M
 

= 2.9, k
 

= 2, ψ=10°

density

density
along y=0.5

post shock 1D density
spectrum

density fluctuations
along y=0.5 and
5 main harmonics



Entropy wave Ae

 

= 0.025, α
 

= 90°, M
 

= 2.9, k
 

= 2, ψ=30°

density

density
along y=0.5

post shock 1D density
spectrum

density fluctuations
along y=0.5 and
5 main harmonics



Entropy wave Ae

 

= 0.025, α
 

= 90°, M
 

= 2.9, k
 

= 2, ψ=80°

density

density
along y=0.5

post shock 1D density
spectrum

density fluctuations
along y=0.5 and
5 main harmonics



Entropy wave Ae

 

= 0.025, α
 

= 90°, ψ=0°
 

vs. kx

 

(ky

 

=0)

post shock 1D density
spectrum

density fluctuations
along y=0.5 and
5 main harmonics

pressure fluctuations
along y=0.5 and
5 main harmonics

post shock 1D pressure
spectrum

Example: kx

 

=8



Dependence of post shock wave number against pre-shock wave number

ke –
 

entropy wave
frequency;

kp

 

–
 

acoustic wave
frequency;

∆ρ1

 

=0.025
∆ρ2

 

=0.114÷0.008

∆p1

 

=0
∆p2

 

=0.078



Entropy wave Ae

 

= 0.25, α
 

= 90°, ψ=60°, ky

 

=10

Density Pressure



Entropy wave Ae

 

= 0.25, α
 

= 90°, ψ=60°, ky

 

=5

Density



Entropy wave Ae

 

= 0.25, α
 

= 90°, ψ=60°, ky

 

=5 (continue)

Density
ADPDIS3DMS-FLUKSS

ADPDIS3D loses regularity

 

and symmetry of the flow



Entropy wave Ae

 

= 0.25, α
 

= 90°, ψ=60°, ky

 

=5 (continue)

divergence of velocity

density

pressure

y-velocity



Entropy wave Ae

 

= 0.25, α
 

= 90°, ψ=60°, ky

 

=5 (continue)
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Entropy wave Ae

 

= 0.25, α
 

= 90°, ψ=60°, ky

 

=5 (continue)

1D spectra (linear scales)
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Entropy wave Ae

 

= 0.25, α
 

= 90°, ψ=60°, ky

 

=5 (continue)

1D spectra (linear scales)
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Entropy waves with turbulent incident spectrum 

density
along y=0.5

post shock 1D density
spectrum

density fluctuations
along y=0.5 and
5 main harmonics

pre shock 1D density
spectrum



Entropy waves with turbulent spectrum 

pressure

pressure (zoom) vorticity(zoom)

density fluctuations



LISM interaction with a randomly perturbed SW

We perturb the SW velocity:

where ε
 

measures the intensity of 
the input turbulence.

The initial spectrum is E(k) ~ k–2. Fluctuations are assumed to be isotropic.

The spectrum is 
chosen in such a way 
that the length scale 
of fluctuations lies 
between the grid size 
(0.5 AU) and 5 AU.



Time-variation of the density distribution



Time-variation of the velocity magnitude distribution







Shock Shape Calculated from Shock 
Speeds, Normals and Timing

Wind/Geotail saw 
this shock nearly 
simultaneously

Obs. at ACE is used 
to predict shock 
location at the time 
of Wind/Geotail 
observation

Neugebauer & Giacalone, 2007



Definition of 2-D Radius of Curvature

S    is the location of the shock determined from observed speed
 

(v) 
and  direction at ACE

W   is the location of another s/c that sees the shock a time Δt later

If the shock is planar, W would be on the vertical line –
 

this was 
seldom the case.  Can use simple geometry to get the radius of 
curvature



Distribution of shock radii of curvature
Neugebauer

 
& Giacalone, 2007



CONCLUSIONS

•

 
Need to understand the interaction of turbulence with shocks, motivated 
by Voyager observations downstream of the TS and models for particle 
acceleration at quasi-perpendicular shocks.

•

 
Structure of shock modified –

 
smoothing, non-R-H jumps (i.e., non-steady) 

•

 
Incompressible upstream fluctuations generates compressible fluctuations 
downstream, amplified density fluctuations, and vortical

 
flow. 

•

 
Begun to study effect of varying Mach number, obliquity, and incidence of 
entropy fluctuations. 

•

 
Development of turbulence and vortical

 
structure downstream due to 

mode coupling 

•

 
Magnetic fields generated downstream –

 
implications for particle 

acceleration at perpendicular shocks interesting.

•

 
Complications in numerically simulating interaction of fluctuations with 
shock wave are not trivial.
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