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Burlaga, Ness, and Acuna, ApJ, 2005

averages ol B, 4, and ¢ from 2005 DOY 50-70 shown in Fig-
ure 5. Turbulence in the solar wind (Coleman 1968; Sari & Ness
1969) has a very small compressive component (Burlaga &
Turner 1976). The turbulence has been treated as a quasi-two-
dimensional and nearly incompressible fluid ( Bruno & Carbone
2005:; Zhou et al. 2004; Marsch 1992: Matthaeus et al. 1990;
Zank & Matthaeus 1992). In the heliosheath, the opposite is
observed; the fluctuations in the magnetic field strength B are
large.

The distribution of the 48 s averages of Bininterval B of Fig-
ure 2 (2005 DOY 50-70) is shown by the points in Figure 6a.
A Gaussian fit to the points (Fig. 6a, solid curve, representing
eq. [1]) and the 95% confidence band (shown by the dashed
curves) indicate that B in this 20 day interval has a Gaussian dis-
tribution. The width of the B distribution gives o = 0.030 £+
0.002 nT, demonstrating that B has a broader distribution than the
components, for which o = (0.023 £ 0.002) nT. This shows that
the turbulence is primarily compressible|

The turbulence in the heliosheath in interval B (Fig. 2) is
Hnlmpm as shown hy the distributions of 8, — (8}, i = R, TN
given by the points in Figure 6b. A single Gaussian fit to the
points in all three of the distributions (Fig. 6b, solid curve) fits
the distributions of the fluctuations of Bg, By, and By very well
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Clearly MHD turbulence in the inner heliosheath is different from that
upstream of the HTS in the supersonic solar wind.

Since the character of the turbulence is different immediately downstream
of the HTS, it suggests that “processing” by the HTS plays an important
role in modifying turbulent upstream fluctuations.

There is little doubt that the subsonic, very hot plasma in the heliosheath
will contribute to the distinctive turbulence observed by Voyager 1 but we
need to understand the role of the HTS in providing the inner boundary or
source for evolving turbulence in the heliosheath.

Explore physics and implicit numerical problems of interaction of
turbulence with shock waves - basic physics not as well understood as one
would like.

Investigate the reaction of turbulence on shock structure.

On the basis of a linear model, we examine the transmission,
amplification, and generation of turbulence by the HTS.

Put both together in simulations to examine assumptions and expectations



Structure of shock in response to
upstream turbulence

Hypersonic approximation corresponds to weak shock approximation
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FIG. 2. Interaction between a fluctuating upstream state and a perpendicular MHD shock with w=2: {a) f=0012 sin(4my) and k=015 sini 4y ): (b) the initial
condition; (c) the tofal pressure p=p)+8_ &, (g profile in nommalized units at Gme r=01%; (d) the total pressure profile at ime r=0.5,

Structural evolution of a perpendicular shock front, including “turbulent
broadening” and “overshoots.”
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FIG. 4. Interaction between a fluctuating upstream state and a perpendicular
MHD shock. Left panel: velocity vector of the initial condition. Right panel:

velocity vector at r=0.5.
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FIG. 5. Interaction between a fluctuating upstream state and a perpendicular
MHD shock. Left panel: velocity magnitude of the initial condition. Right

panel: velocity magnitude at r=0.5.



N-wave interacting with upstream sinusoidal fluctuations
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condition; (c) the total pressure p=p)+8, &, g profile at time r=0.15; (d) the total pressure profile at time =05,
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FIG. 11. Normalized magnetic field fluctuation B (a) the initial magnetic field fluctuation B, (b) the magnetic field fuctuation B, at time +=0.5.



MATHEMATICAL FORMULATION

The interaction of upstream waves with a shock wave has been
investigated in several papers, some of the most important of
which are those by McKenzie & Westphal [4], Scholer & Belcher
[5], Achterberg et al. [6], and Vainio & Schlickeiser [7], Ribner [8]

With the exception of [4] and [6], these papers all focus on the
reduced 2D problem of a fast shock interacting with an Alfven
wave when what is really needed is the interaction of an upstream
fully turbulent spectrum of fluctuations interacting with a 3D shock
wave.

This problem is prohibitively difficult analytically for the full MHD
problem but it can be solved hydrodynamically.

Some numerical investigations: Balsara (supersonic interstellar
turbulence), Jackson et al., Lele (hydrodynamics, aerodynamics), ...



MHD JUMP RELATIONS
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MATHEMATICAL FORMULATION - cont.

In equations (1) - (6), we use a single-fluid description for the solar
wind plasma, essentially assuming that interstellar PUls co-move
with the solar wind flow. This is certainly a reasonable assumption.
It is further straightforwardly estimated that the pressure
contribution of PUIs in the far outer heliosphere far exceeds the
thermal solar wind pressure (e.g., Zank et al., [9]), making for a
high plasma beta state ahead of the HTS. Observations of pressure-
balanced structures by Burlaga et al., [10] indicate the dominance
of the PUI pressure in the outer heliosphere.

Thus, the total pressure P in the one-fluid model (1) - (6) may be
regarded as the PUI pressure.

The adiabatic index y must therefore reflect the PUI distribution. y
can vary between 5/3 and 2 for PUIs.

For a bispherical PUI distribution, y = 5/3 whereas for an
unscattered ring-beam distribution, y = 2. We will assume that
because the scattering mfp is long, the PUI gas satisfies y = 2.



MATHEMATICAL FORMULATION - cont.

For a perpendicular shock wave, u, # 0, B, = 0, and the jump conditions
are

0

: : B’
= = ey
_pun] [pu”u!] [pn” + B;J

F

1::3+11'+ : B_}ZE} [B;"'p]:[}
o) \r o

Observe that if we use y = 2 and introduce P* = P + B2/8m we immediately

obtain _
pou, |=0 [puu,|=0 [pu.f—P*]=0 (7)
1, 2P
EH‘JF , }:D [pr]:[] (8)

Structurally identical to the usual hydrodynamic jump conditions with a
magnetic field contribution to the total pressure P* (i.e., P* is the sum of
the PUI and magnetic pressures). “Sound speed” for system is fast mode
speed for waves propagating perpendicularly to the magnetic field

V2 =2P"/p=2P/p+2B*/(87p) = C2 +V



HIGH-BETA PLASMA/HYDRO. MODEL

Consider the interaction of fluctuations with oblique shock wave.
Classical problem, beginning with Ribner [2] and McKenzie &
Westphal [1].

Reconsider using a somewhat more general formulation which has
advantage of indicating how to develop a non-linear model.

For simplicity, consider the interaction of entropy fluctuations
with a shock wave.

1. J. F. McKenzie and K. O. Westphal, P&SS, 17, 1029 (1969)
2. H.S. Ribner, Report 1164 1957, pp. 199-215; Report 1233, pp 683-701



HIGH-BETA PLASMA/HYDRO. MODEL
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HIGH-BETA PLASMA/HYDRO. MODEL

e Dispersion relation for hydrodynamics:

@' =m—uk
o (0" - CIk? ) =0
@ =0

Entropy mode: &p° =0 ou* =0 oP =0
Vorticity mode:  §p=0 éu” =du’(—sing".cos¢” } oP=0

o =Ck’
i (cosg?.sing®) SP*=Cl5p° &p° =0
P

(Fast) Acoustic mode: ou” =+C,

NB REMINDER: Recall that for this case P* = P + B2/8n



MATHEMATICAL FORMULATION - cont.

UPSTREAM DOWNSTREAM

1 — 2
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e For a system of conservation laws

MATHEMATICAL FORMULATION - cont.

ou

+Z /(U)=0

Gl

the Rankine-Hugoniot conditions are given by

[U] @, + Z[fj (U )*gol_;_ } =0

J



Non-steady R-H conditions with shock front deformation:

ol +[ ol 1.8, ] =0

m\
t/\ n = —[p]&+ [P[”x —u ]} =0 (mass flux)
AN

~

—[pu, & + [pul_ (u, —u, &, )+ P] =0 (normal momentum flux)

" go(x,y,f‘):x (v r ,OH +pe &+ plu, —u& ) Vu?+w)|=0 (energy flux)
N [ ) J)( 2 J

Yields the boundary condition: [Ut] =0

And now impose linearity i.e., £ <1
V.1

u =u-—u, (1,—;;_\,) = (HJ_;}.,HJ_ + HI;:},)

Five variable and 5 equations therefore well posed.



e Recover standard R-H conditions
in steady frame i.e., £ = N

P,
B

:p%]=0
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NB REMINDER: Recall that for this case P* = P + B2/8n



Consider simplest case of incident

Upstream .
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Linear analysis of deformed shock front equations assuming
perturbed shock front amplitude small. Very clear analysis of
transmission and excitation of downstream fluctuations.

Continuity of frequency and transverse wave number across
deformed shock yields downstream propagation angles for
transmitted and excited fluctuations.

Can validate calculation numerically.

Can impose upstream spectrum and calculate the downstream
spectrum, ratio of compressive to incompressible fluctuations,
distribution, anisotropy, amplification of incident turbulence.

Note the generation of magnetic field at the shock.



VORTICITY-ENTROPY WAVE/SHOCK
INTERACTION: Simulations

Simulate a two-dimensional interaction between a plane vorticity-entropy
wave and a oblique shock wave.

Shock wave parameters: M - Mach number of upstream flow;
a - angle between shock wave and upstream flow.

Disturbed upstream flow: 2 = P +pd cos(kx+k y—Fkt)
u=1u+UA, siny, cos(k,x +k,y—k;t)

v =T ~UA, cosy; cos(hx + K,y — k1)

P=PpP

where

U=~Nu~+v", k=ku+kyv, k =kcosy, k =ksiny,

k is the magnitude of the wavenumber vector
. denotes the angle between the wavenumber vector and x
A, and A, are intensity of velocity and density upstream of the shock wave.



Entropy wave A, = 0.025, a =90°, M=2.9, k=2, p=10°
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Entropy wave A, = 0.025, a =90°, M=2.9, k=2, y=30°
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Entropy wave A, = 0.025, a =90°, M=2.9, k=2, y=80°
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Example: k,=8
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Dependence of post shock wave number against pre-shock wave number

40

k. — entropy wave
frequency;

k, — acoustic wave
frequency;

Ap,=0.025
Ap,=0.114+0.008



Entropy wave A, = 0.25, a = 90°, y=60°, k, =10

Density Pressure



Entropy wave A, = 0.25, a = 90°, =607, k=5

DB: plt010380.2d.hdf5
Cycle: 10380 Time:2.5

Surface
Var: densi
49,

2.0

user: lgor
Sat Jun 13 11:47.06 2009

Density



DB: plt010380.2d.hdf5
Cycle: 10380 Time:2.5

Pseudocolor

Var: deg%
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.\0‘7503

Man: 4944
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Entropy wave A, = 0.25, a = 90°, y=60°, ky=5 (continue)
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ADPDIS3D loses regularity and symmetry of the flow



Entropy wave A, = 0.25, a = 90°, y=60°, k =5 (continue)

pressure divergence of velocity



Entropy wave A, = 0.25, a = 90°, y=60°, ky=5 (continue)

Parameters alongy = 0.5
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Entropy wave A, = 0.25, a = 90°, y=60°, ky=5 (continue)

1D spectra (linear scales)
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Entropy waves with turbulent incident spectrum

pre shock 1D density

"*1 spectrum ] post shock 1D density
0.07 4 0.06 | Spectrum
it 0.05- \1
0.03 ] ﬂ
0.04 4
4 004 4 1
003
003
002
002
00l 001
R T T A 0w e w0
Jrequency frequency
| 0.08
3.5:— 0.04
1 density vl Aﬁ h /\ n )‘ r
I = It
2 alongy 05 0 uuﬁq ﬁﬂ'h ||| |}T]Inﬂ\'-lnnu|»hi
825 ) | | |
g WUVW'? vf W
| 002 J I
2_— ll
N density fluctuations
j " =L along y=0.5 and
1 o oY . L ] 5 .
T T o] 5 main harmonics




Entropy waves with turbulent spectrum

LAy = ]

Aoy

0.38

0.36

0.34

0.32

0.3

0.28

T

0.52

0.54 0.56

0.38

0.36

0.24

032

0.3

0.28

sity fluctuations




LISM interaction with a randomly perturbed SW

We perturb the SW velocity: U,=U +&U,, U, =¢cU,, &£=0.025,

where ¢ measures the intensity of
the input turbulence.

The initial spectrum is E(k) ~ k2. Fluctuations are assumed to be isotropic.
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Time-variation of the density distribution

Time, 250774708514 33724 73241 6657 vears

. om’

03510
0.2369
0.1599
01079
0.0778
0.0497
00332
00724
001851
0.o1nz
0.0063
00045
000731
(.00
00014
0.001g
00007
Q.00
00003
00002

200

1004

200




Time-variation of the velocity magnitude distribution
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Shock Shape Calculated from Shock
Speeds, Normals and Timing
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Neugebauer & Giacalone, 2007



Definition of 2-D Radius of Curvature

A r -v At
S. VAt C v .C

w

S is the location of the shock determined from observed speed (v)
and direction at ACE
W is the location of another s/c that sees the shock a time At later

If the shock is planar, W would be on the vertical line - this was
seldom the case. Can use simple geometry to get the radius of
curvature



Distribution of shock radii of curvature
Neugebauer & Giacalone, 2007
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CONCLUSIONS

Need to understand the interaction of turbulence with shocks, motivated
by Voyager observations downstream of the TS and models for particle
acceleration at quasi-perpendicular shocks.

Structure of shock modified - smoothing, non-R-H jumps (i.e., non-steady)

Incompressible upstream fluctuations generates compressible fluctuations
downstream, amplified density fluctuations, and vortical flow.

Begun to study effect of varying Mach number, obliquity, and incidence of
entropy fluctuations.

Development of turbulence and vortical structure downstream due to
mode coupling

Magnetic fields generated downstream - implications for particle
acceleration at perpendicular shocks interesting.

Complications in humerically simulating interaction of fluctuations with
shock wave are not trivial.
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