Solar Atmosphere Structures Their relevance to solar limb modeling

Margit Haberreiter Acknowledgement Juan Fontenla LASP, University of Colorado Picard Workshop, March 8-9, 2010

Overview

- Formation height
- Details about latest atmosphere structures by Fontenla et al., 2009
- Spectral synthesis in spherical symmetry
- Results

Formation Heights

Formation height of spectral line

Kappa total = kappa continuum + kappa line, optically thick lines -> change Of the height (i.e. Temperature) where the radiation comes from

Solar Radiation Physical Modeling (SRPM)

Multi level atoms

- 373 ions, from H to Ni with ioncharge 25
- ~14'000 atomic levels
- ~170'000 spectral lines
- Statistical equation is solved to get the level populations

Chromosphere and transition region

- for ioncharge ≤ 2 :
- full NLTE (Fontenla et al., 1999; 2006; 2007)
- plus optically thin transition region lines

• Corona

- ioncharge >2
- optically thin, i.e. collisions and spontaneous emission
- Line of sight integration accounts for opacity
- Spherical symmetry

Masks from Precision Solar Photometric Telescope

Disk mask on 2005/9/12 obtained from PSPT data, Mauna Loa, Hawaii.

Sunspot Penumbra Sunspot Umbra Faculae Plage Active network Quiet network Intergranular Cells

Contrast of different features on the solar disk

Feature	Model	Feature Description	Pressure at 2×10^5 K	Disk Center Contrast in
designation	index		$(dyne cm^{-2})$	Ca II K MLSO/PSPT
В	1001	Quiet-Sun inter-network	0.235	<1.02
D	1002	Quiet-Sun network lane	0.340	1.02-1.08
F	1003	Enhanced network	0.552	1.08-1.19
Н	1004	Plage (that is not facula)	1.00	1.19-1.43
Р	1005	Facula (i.e., very bright plage)	1.62	1.43-1.80
S	1006	Sunspot umbra	3.86	
R	1007	Sunspot penumbra	2.10	

Fontenla et al., 2009, ApJ,

Fontenla et al., 2009, ApJ, in press

Key elements of latest atmosphere structure

- low temperature minimum at low density
 - in strong NLTE
 - improved agreement of molecular lines (CO, CH)
- Ambipolar diffusion of hydrogen versus protons
 - Increases the amount of neutral hydrogen in lower levels
- Detailed line and continuum opacities

Comparison of different atmosphere strucutres

Atoms/lons in full NLTE

Species	NLTE Levels	Species	NLTE Levels	Species	NLTE Levels
HI	15				
Heı	20	Неп	15		2323
Ст	45	Сп	27	Сш	38
NI	26	NII	33	Νш	39
01	23	Оп	31	Ош	44
NAI	22				
MGI	26	MGп	14	MGIII	54
ALI	18	ALΠ	14	Alm	32
SII	35	SIII	14	SIш	60
SI	20	Sп	30	Ѕш	32
CAI	22	САп	24		
FEI	120	FЕп	120		

Ca II IR lines

UV Spectra

Comparison EVE versus SRPM

Opacities 2000-6000 A

Wavelength (Å)

Opacities

Effect of opacities on limb position

Spherical Symmetry

Allows the calculation of intensities at and beyond the limb

(e.g. Haberreiter et al. 2008)

Account for corona over 2 x area of solar disk

Limb profile

Haberreiter et al. 2008, ApJ, L53-56

Derivative of the intensity profile

Haberreiter et al. 2008, ApJ, L53-56

Limb profile for different instruments

Derivative of dl/dr for different instruments

Conclusion

- Latest Fontenla et al., 2009 atmospheres are very well suited for the calculation of molecular lines
- Detailed continuum and line opacities are included in the calculation
- Different opacities lead to different limb positions
- Complete physics needs to be included for realistic limb modeling