Laboratoire Dynamique des Etoiles, des (Exo)-planètes, et de leur environnement

Caractérisation des fragments de fission et développement du dispositif expérimental FALSTAFF
 
DPhN LEARN
Mon, Sep. 25th 2017, 14:00-16:30
Bat 713, salle de séminaires Galilée , CEA Saclay, Orme des Merisiers

La fission nucléaire est le mécanisme de séparation d’un noyau lourd en deux noyaux appelés fragments de fission. Ces fragments excités émettent des neutrons et des gammas dits prompts pour rejoindre leur état fondamental ou métastable. L’énergie libérée lors de la fission est utilisée dans les centrales nucléaires pour fournir de l’électricité. La durée de vie et le contrôle des réacteurs nucléaires dépendent entre autres des observables de fission telles que les rendements en masse des fragments, la multiplicité et l’énergie des neutrons et des gammas prompts.
La première partie de cette thèse est dédiée à l’étude du processus de désexcitation des fragments de fission avec le code de simulation Monte-Carlo FIFRELIN. Ce code, constitué de plusieurs modèles nucléaires décrivant les fragments, prédit les propriétés (multiplicité, énergie) des particules promptes émises lors de la désexcitation. Lors de ce travail de thèse, l’influence des modèles sur les prédictions du code a été étudiée. Les modèles étudiés sont ceux définissant le moment angulaire initial, la densité de niveaux et les fonctions de force gamma des fragments. Les résultats de ces études permettent d’identifier les modèles qui influencent significativement les prédictions du code et donc, de sélectionner la combinaison des modèles reproduisant le maximum d’observables et d’améliorer la description nucléaire des fragments.
Ces études sont d’abord menées sur la fission spontanée du 252Cf pour laquelle de nombreuses données expérimentales existent, ce qui permet de contraindre fortement les modèles. Des études sur la fission rapide (énergie des neutrons incidents de l’ordre du MeV) de 238U et 237Np sont ensuite réalisées. Elles sont motivées, entre autres, par le développement de nouveaux concepts de réacteurs rapides, dits de quatrième génération, permettant de réduire les quantités de déchets nucléaires et d’utiliser les réserves abondantes de 238U pour fournir de l’électricité.
Les données expérimentales relatives à la fission rapide sont rares. De nouveaux dispositifs expérimentaux sont actuellement en développement afin d’étudier l’évolution des différentes observables de fission sur un large domaine en énergie d’excitation. Le dispositif FALSTAFF qui fait l’objet de la deuxième partie de cette thèse est l’un d’entre eux. Les étapes de développement, d’optimisation et de caractérisation du premier bras de FALSTAFF sont présentées. Ce spectromètre, installé auprès de l’installation NFS (Neutrons For Science), étudiera la fission rapide en cinématique directe de nombreux actinides. La détection des deux fragments de fission en coïncidence permettra de caractériser leur énergie, leurs masses (avant et après évaporation des neutrons) et leur charge. La multiplicité des neutrons émis sera alors déterminée et nous renseignera sur le partage de l’énergie d’excitation entre les fragments. Les données mesurées serviront ultérieurement de données d’entrée au code FIFRELIN.
La mesure de la vitesse des deux fragments en coïncidence (méthode 2V), avec des détecteurs de temps de vol MWPC-SeD donnent accès à la masse avant évaporation. Une chambre à ionisation axiale placée après ces détecteurs permet de mesurer l’énergie cinétique et le profil de perte d’énergie des fragments, et donc de déterminer respectivement la masse après évaporation (méthode EV) et la charge nucléaire des fragments.
La partie expérimentale de cette thèse est dédiée au développement des programmes de simulation et d’analyse des données, à la mise en place du système d’acquisition, à la caractérisation et à l’optimisation des détecteurs. Ce dernier point concerne essentiellement l’étude des performances de la chambre à ionisation axiale.

Contact : lthuilli

 

Retour en haut