News 2017

Mar 20, 2017
Key role of the gaseous phase underlined by numerical simulations and analytical approach

The proto-clusters, which are the birth sites of stars, are formed non-uniformly inside molecular clouds of the interstellar medium. Studying the steps leading to the collapse of pre-stellar dense cores is essential to understanding the star formation. Using both numerical simulations carried out on massively parallel computers and an analytical approach, two researchers from the Astrophysics Department / AIM Laboratory of CEA-Irfu, Y.-N. Lee and P. Hennebelle, have shown that certain properties of a stellar cluster are determined before the star formation starts, especially in the gaseous phase and that the gravity and turbulence play a major role. This work, published in two articles in the journal Astronomy & Astrophysics, provides a better understanding of parameters related to star formation such as the initial mass function and their efficiency and rate.

Mar 13, 2017
Mysterious alignment of the rotation axis of stars in two clusters

The stars do not play dice! It is the extraordinary discovery that the researchers of the Department of Astrophysics-Laboratoire AIM of the CEA-Irfu made by succeeding in determining the orientation in the space of the axis of rotation of stars belonging to two clusters of stars, thanks to asteroseismology. About 70% of the observed stars have perfectly aligned axes of rotation, in formal contradiction with the star formation models which predict that these axes of rotation should be randomly distributed. Numerical simulations showed that, most likely, these stars had managed to retain the initial rotational motion of a cloud that gave rise to the cluster. This discovery, if confirmed in other clusters, could lead to reconsideration of the fundamental processes of star formation. These works make headlines in the journal Nature Astronomy of March 13, 2017

Watch the author's interview : The mysterious alignment of the rotation axis of stars 

Nov 28, 2017

TO BE TRANSLATED

Après une sélection sévère, les premières cibles d'observation du télescope spatial James Web (JWST) qui doit être lancé au printemps 2019, viennent d'être dévoilées.  Sur les 200 déclarations d’intention initialement envoyées par des chercheurs du monde entier, seulement 13 programmes ont été retenus au titre des "Premières publications scientifiques (ERS pour Early Release Science). Parmi eux, deux programmes auxquels participe le CEA. Ces observations auront lieu au cours des cinq premiers mois des opérations scientifiques du JWST, après une période de mise en service de six mois.

 

Aug 30, 2017

An international team including two researchers from the Department of Astrophysics-Laboratory AIM of CEA-Irfu detected for the first time the presence of the CH+ molecule in distant galaxies of the young universe, thanks to the large ALMA interferometer. The presence of this particular molecule demonstrates the existence around the young galaxies of large turbulent reservoirs of low-density cold gas. Their presence could explain how galaxies succeed in prolonging their phase of intense stellar formation despite the ejection of matter induced during the explosions of stars. These results are published in the journal Nature of 30 August 2017.

 

Jun 12, 2017
A new link between the dynamics of galaxies and the activity of their central black hole

Using images obtained with the Hubble Space Telescope, an international team of researchers led by Yu-Yen Chang from the Service d’Astrophysique-Laboratoire AIM at CEA–IRFU showed that some galaxies hosting an active nucleus are much more compact than those without nuclear activity. This discovery sheds new light on the physical processes driving the evolution of super-massive black holes at the center of distant galaxies. It suggests that the huge amount of gas needed for their growth could be funneled to the central region following the violent gravitational instabilities that occur within the galaxy gaseous disk. These instabilities may trigger a phase a dynamical contraction, hence explaining the ultra-compact morphology of the galaxies studied here. These results are published in the Monthly Notices of the Royal Astronomical Society.

May 19, 2017
An old galaxy with unexpected features

An international team including a researcher from the AIM Laboratory-Astrophysics Department of CEA-Irfu has just discovered an elliptical galaxy of completely unexpected shape within the galaxy cluster Abell 2670. Deep observations made by the new MUSE multi-spectrograph recently put into operation at the European Observatory VLT in Chile revealed a highly deformed elliptical galaxy, showing in particular long gas tails and star formation regions normally absent in this type of galaxy. Astronomers now assume that this galaxy has undergone a recent fusion with another gas-rich galaxy. Much of this gas was then driven to the center of the elliptical galaxy during the collision. These results are published in the Astrophysical Journal Letters of May 2017

Apr 16, 2017

The PILOT astrophysics experiment has been launched the 17th April under a stratospheric balloon from Alice Springs in central Australia. The aim is to observe the polarization of the emission of dust particles present in the interstellar medium of our Galaxy and the nearby galaxies. With a mass of nearly one ton, PILOT [1] uses the biggest balloons launched by the National Center for Space Studies (CNES). It was developed by the Institute for Research in Astrophysics and Planetology (CNRS / CNES / Paul Sabatier University) and the Institute of Space Astrophysics (CNRS / Université Paris-Sud) and the Institute of Research into the Fundamental Laws of the Universe (CEA-Irfu). Detectors capable of detecting infrared radiation from dust have been developed at the CEA and are the result of research done to realize the PACS camera that equiped the Herschel space observatory.

 

Feb 11, 2017

At the center of a small galaxy located about 1.8 billion light-years from Earth, a giant black hole swallowed a star for about a decade, which is exceptionally longer than any observed episode of this kind. This discovery was made by an international collaboration involving an astrophysicist from IRFU, thanks to a trio of orbiting X-ray telescopes.

Jan 08, 2017
The most energetic events of the Universe

A team of researchers led by Rémi Adam (Laboratoire Lagrange - OCA, UCA, LPSC Grenoble, CNES), Iacopo Bartalucci and Gabriel Pratt (Astrophysics Department- AIM Laboratory at CEA-Irfu) obtained for the first time an image of the gas velocity in colliding clusters of galaxies with NIKA [1], a new generation millimeter camera, at the focus of the 30 m diameter IRAM telescope of Pico Veleta (Spain). NIKA observations, which give accurate mapping of hot gas velocity in clusters, provide a new way to study the collision of clusters of galaxies, responsible for the most energetic events in the Universe after the Big Bang. This work is being published in the journal Astronomy & Astrophysics..

 

Oct 16, 2017
The discovery of a new type of gravitational wave

Using a range of detectors developed with the participation of the CEA, physicists at CEA-Irfu have scrutinized the region from which the gravitational wave was detected on August 17, 2017 by LIGO-VIRGO facilities. Unlike the four previous detections of waves of the same type discovered since 2015, this new vibration of space, called GW170817, is of different origin. It does not result from the fusion of two black holes but of two densest known stars, the neutron stars.
Thanks to the INTEGRAL satellite in orbit, the astrophysicists of the Department of Astrophysics-AIM Laboratory (CEA, CNRS, Univ Paris Diderot) were able to show that the wave GW170817 was accompanied by a gamma burst, a brief emission of gamma rays emitted just 2 seconds after the fusion of the two stars. By pointing in record time one of the giant telescopes of the VLT (Chile), they also participated in the study of the visible light emission that followed the fusion, showing in particular that this light was not polarized.
Physicists from the Department of Particle Physics of CEA-Irfu also analyzed the data obtained by the ANTARES experiments for neutrino and H.E.S.S. for the search for very high energy gamma rays, showing that the GW170817 wave did not provide detectable emission.

The study of this new phenomenon, never observed directly so far, offers many exciting perspectives for astrophysics as the possibility of better understanding the origin of the heavy elements of the Universe and even the ability to measure in a complete independent way the rate of expansion of the Universe.
All of these outstanding results are published in a series of articles presented in the journals Nature, Astrophysical Journal and Physical Review Letters on October 16, 2017.

For more information : see the French version

Oct 06, 2017

The Cherenkov Telescope Array (CTA) consortium brings together 1300 scientists from 32 countries. They have published their scientific aims in a document over 200 pages long. This is the result of several years of work, and includes contributions from approximately fifteen Irfu researchers involved in X-ray and gamma-ray observatories (Fermi, Integral, XMM-Newton, H.E.S.S., etc.).

Oct 17, 2017
Planetary migration: magnetic or tidal effects ?

A large part of the exoplanets known today are in very close orbit around their star, allowing very intense interactions between the planets and the host star. An international collaboration, led by researchers from Department of Astrophysics-AIM Laboratory at CEA-Irfu, has shown that these planets in close orbits migrate rapidly, due to the combined effect of tidal forces and magnetic forces. This study provides essential elements for understanding the formation and evolution of star-planet systems. These migration effects should soon be observable by missions like PLATO (PLAnetary Transits and Oscillations of Stars) of the European Space Agency (ESA) which will study the habitability zone of the planets. These results are published in the October 2017 issue of Astrophysical Journal Letters.

Jul 31, 2017
The study of solar vibrations reveals the astonishing behavior of the thermonuclear center of the Sun

By analyzing more than 16 years of data collected by the GOLF instrument onboard the SOHO satellite, an international collaboration involving two researchers from the Department of Astrophysics-Laboratory AIM of CEA-IRFU has demonstrated a rapid rotation of heart of the sun. For the first time, researchers were able to indirectly determine the properties of solar gravity waves, oscillations affecting the innermost layers of the star. They were able to show that the Sun centre turns on average in a little more than 7 days, about 4 times faster than its surface. This rapid rotation could have been inherited from the first moments of the sun formation. These results are published in the Astronomy & Astrophysics journal of June 2017.

Jul 13, 2017
The secret of the star magnetic cycles

Thanks to new numerical simulations, a scientific team led by researchers from the Astrophysics Department-Laboratory AIM of CEA-Irfu has succeeded in explaining why the magnetic field of the Sun reverses every 11 years. Scientists have highlighted the existence of a strong feedback between the star magnetic field and its internal rotation profile, with temporal modulations that ultimately determine the period of the cycle. This major discovery in the understanding of the origin of the star magnetic fields is published on July 14, 2017 in the journal Science.

See the video :   The magnetic cycle of the Sun in virtual reality (CEA Astrophysics)

May 23, 2017
New study simulates how tornado-shaped flow in a dynamo strengthens the magnetic field

An international team, including researchers from the Department of Astrophysics (CEA-Irfu) and Department of Solid State Physics (CEA-Iramis), conducted an unprecedented simulation based on the Von-Kármán-Sodium (VKS) dynamo experiment (CEA-CRS-ENS) [1], to examine more closely how the liquid vortex created in liquid sodium by the propellers of VKS device can generate a magnetic field. The researchers studied the effects of electrical resistivity and fluid turbulence on the generation and collimation of the magnetic field. The detailed modeling shows how a magnetic field can emerge by dynamo effect within a turbulent conductive liquid. These results, published on May 23, 2017 in the journal Physics of Plasma, give to astrophysicists a crucial clue on the generation of magnetic fields within stars or planets.

Mar 13, 2017
Mysterious alignment of the rotation axis of stars in two clusters

The stars do not play dice! It is the extraordinary discovery that the researchers of the Department of Astrophysics-Laboratoire AIM of the CEA-Irfu made by succeeding in determining the orientation in the space of the axis of rotation of stars belonging to two clusters of stars, thanks to asteroseismology. About 70% of the observed stars have perfectly aligned axes of rotation, in formal contradiction with the star formation models which predict that these axes of rotation should be randomly distributed. Numerical simulations showed that, most likely, these stars had managed to retain the initial rotational motion of a cloud that gave rise to the cluster. This discovery, if confirmed in other clusters, could lead to reconsideration of the fundamental processes of star formation. These works make headlines in the journal Nature Astronomy of March 13, 2017

Watch the author's interview : The mysterious alignment of the rotation axis of stars 

Feb 20, 2017
An exceptional parade of exoplanets

Seven planets of terrestrial size and moderate temperature gravitate around the star Trappist-1, a small cool red star located at 40 light years from Earth. Better: at least three of them are in conditions compatible with the presence of liquid water on their surface. This was discovered by an international team involving CNRS, CEA and UPMC researchers at the Astrophysical Laboratory of Bordeaux (CNRS / University of Bordeaux), the Laboratoire de Météorologie Dynamique (CNRS / UPMC / École Polytechnique / ENS) and the Astrophysics Department - AIM Laboratory (CEA / CNRS/ Paris Diderot University). The planetary system orbiting the star Trappist-1 is one of the most astonishing and richest, especially in terms of scientific prospects: beyond the determination of the orbit and the mass of these planets, it will be possible, in the near future, to highlight the possible presence of atmospheres. This study is published in Nature, 23 February 2017.

Feb 16, 2017

In an article published in the Astrophysical Journal, an international team including two researchers from the Astrophysics Department- AIM Laboratory at CEA-Irfu, successfully detected the trace of solar oscillations in the light reflected by the planet. These very Low luminosity variations originate from the vibrations of the solar surface. The data were obtained from the Kepler/K2 (NASA) satellite which observed for 49 days continuously the planet located at an average distance of 4.5 billion kilometers from Earth. Kepler's data were also compared with those of the  European satelite Soho (ESA/NASA).

Just as the vibrating note of a drum is directly related to its size, solar oscillation analysis makes it possible to calculate the mass, the radius and even the internal structure of the Sun. Curiously the data calculated from the light reflected by Neptune provided slightly different quantities of those obtained from direct sunlight. These deviations can be attributed to a particular state of activity of the Sun when the satellite observed Neptune.

Jan 19, 2017

Astrophysicists from IRFU have studied the evolution over time of the "wind" in stars similar to the Sun. They were able to perform 3D computer simulations of these stellar winds based, in particular, on spectropolarimetric measurements of the surface magnetic field of the stars. 

Nov 28, 2017

TO BE TRANSLATED

Après une sélection sévère, les premières cibles d'observation du télescope spatial James Web (JWST) qui doit être lancé au printemps 2019, viennent d'être dévoilées.  Sur les 200 déclarations d’intention initialement envoyées par des chercheurs du monde entier, seulement 13 programmes ont été retenus au titre des "Premières publications scientifiques (ERS pour Early Release Science). Parmi eux, deux programmes auxquels participe le CEA. Ces observations auront lieu au cours des cinq premiers mois des opérations scientifiques du JWST, après une période de mise en service de six mois.

 

Mar 11, 2017
First light of the ArTéMiS camera at two wavelengths and first results on interstellar filaments

The new ArTéMiS submillimetric camera was successfully re-installed in June 2016 on the APEX telescope in the Atacama desert in Chile. In its new configuration, with an increased number of detectors, this camera can simultaneously obtain images at 350 and 450 microns. ArTéMiS produces data with angular resolution more than three times better than that of Herschel satellite at the same wavelengths, and a factor 2 to 3 times better than the LABOCA instrument, also installed on APEX, and which observes at 870 microns. Combining maps obtained at different wavelengths is essential to fully characterize the physical conditions (temperature, density ...) of the dense interstellar matter that forms the stars.

Apr 16, 2017

The PILOT astrophysics experiment has been launched the 17th April under a stratospheric balloon from Alice Springs in central Australia. The aim is to observe the polarization of the emission of dust particles present in the interstellar medium of our Galaxy and the nearby galaxies. With a mass of nearly one ton, PILOT [1] uses the biggest balloons launched by the National Center for Space Studies (CNES). It was developed by the Institute for Research in Astrophysics and Planetology (CNRS / CNES / Paul Sabatier University) and the Institute of Space Astrophysics (CNRS / Université Paris-Sud) and the Institute of Research into the Fundamental Laws of the Universe (CEA-Irfu). Detectors capable of detecting infrared radiation from dust have been developed at the CEA and are the result of research done to realize the PACS camera that equiped the Herschel space observatory.

 

Apr 16, 2017

The PILOT astrophysics experiment has been launched the 17th April under a stratospheric balloon from Alice Springs in central Australia. The aim is to observe the polarization of the emission of dust particles present in the interstellar medium of our Galaxy and the nearby galaxies. With a mass of nearly one ton, PILOT [1] uses the biggest balloons launched by the National Center for Space Studies (CNES). It was developed by the Institute for Research in Astrophysics and Planetology (CNRS / CNES / Paul Sabatier University) and the Institute of Space Astrophysics (CNRS / Université Paris-Sud) and the Institute of Research into the Fundamental Laws of the Universe (CEA-Irfu). Detectors capable of detecting infrared radiation from dust have been developed at the CEA and are the result of research done to realize the PACS camera that equiped the Herschel space observatory.

 

Mar 11, 2017
First light of the ArTéMiS camera at two wavelengths and first results on interstellar filaments

The new ArTéMiS submillimetric camera was successfully re-installed in June 2016 on the APEX telescope in the Atacama desert in Chile. In its new configuration, with an increased number of detectors, this camera can simultaneously obtain images at 350 and 450 microns. ArTéMiS produces data with angular resolution more than three times better than that of Herschel satellite at the same wavelengths, and a factor 2 to 3 times better than the LABOCA instrument, also installed on APEX, and which observes at 870 microns. Combining maps obtained at different wavelengths is essential to fully characterize the physical conditions (temperature, density ...) of the dense interstellar matter that forms the stars.

Apr 16, 2017

The PILOT astrophysics experiment has been launched the 17th April under a stratospheric balloon from Alice Springs in central Australia. The aim is to observe the polarization of the emission of dust particles present in the interstellar medium of our Galaxy and the nearby galaxies. With a mass of nearly one ton, PILOT [1] uses the biggest balloons launched by the National Center for Space Studies (CNES). It was developed by the Institute for Research in Astrophysics and Planetology (CNRS / CNES / Paul Sabatier University) and the Institute of Space Astrophysics (CNRS / Université Paris-Sud) and the Institute of Research into the Fundamental Laws of the Universe (CEA-Irfu). Detectors capable of detecting infrared radiation from dust have been developed at the CEA and are the result of research done to realize the PACS camera that equiped the Herschel space observatory.

 

 

Retour en haut