- How is the point resolution defined?
- The Hits are distributed following a Gaussian distribution around the particle trajectory, so $x_{\text {Hit }}-x_{\text {Track }}$ (resp. $z_{\text {Hit }}-z_{\text {Track }}$) follows a Gaussian distribution

to be correct: this is true for track parallel to the Y axis, else the minimal distance has to be calculated using the track angle:

$$
\Delta x_{\text {corrected }}=\Delta x \cos \left(\varphi_{h i t}\right), \text { with } \varphi_{h i t}=\sin ^{-1}\left(\sin \left(\varphi_{0}\right)-y_{h i t} \cdot C\right)
$$

- The width σ of this distribution is the point resolution

Resolution Calculation

- Often the true trajectory (green) is not known, but only the reconstructed track position. How to determine the resolution?
- The use of the "Geometric Mean Method" solves this problem:
- Distance: $\Delta \mathrm{x}_{\text {Hit }}$ when the Hit in question is included in the track fit smaller than true distance, since the Hit "pulls" the track towards its position (red)
- Residual: $\Delta \mathrm{x}_{\text {Hit }}$ when the Hit in question is not included in the track fit larger than the true distance, since other Hits "pull" the track away from the Hit in question (blue)

Resolution Calculation

- Both the distance and the residual are Gaussian distributed. The width of the distance distribution is too narrow, the width of the residual distribution is too large.
- But the geometric mean of the widths of both distributions:

$$
\sigma=\sqrt{\sigma_{\text {distance }} \cdot \sigma_{\text {residual }}}
$$

gives the right value as if the true trajectory would be known

- This has been proven for straight tracks analytically: R. K. Carnegie et al., "Resolution studies of cosmic-ray tracks in a TPC with GEM readout", Nucl. Instrum. Meth. A538, 372-383 (2005), physics/0402054.
- For curved tracks, a Monte Carlo Study has been done:

\square	residual (without hit)
\square geometric mean	
\square distance (with hit)	\longrightarrow Monte Carlo truth

Resolution Agreement

- To allow a comparison of the resolution results of different working groups, an agreement has been made:
- Resolution is calculated using the Geometric Mean Method
- Angle Cut: $\varphi<0.1$ rad (this is about 5.73°)

Drift Velocity

- The drift velocity can be simulated with Magboltz for a given gas mixture and field
- Difficulties:
- Pollutions $\left(\mathrm{H}_{2} \mathrm{O}\right)$ of the chamber gas change the drift velocity. They can be measured, but a system is not always available
- So it is better to measure the drift velocity

Drift Velocity

- Use two laser beams perpendicular to the drift path with defined distance:
Δz
laser beams
- Measure the time $\Delta t_{\text {laser beams }}$ between the arrival of the signals on the pad plane:

- Then the drift velocity is:

TPC, length 100 cm
diameter 38 cm

$$
v_{\text {Drift }}=\frac{\Delta z_{\text {laser beams }}}{\Delta t_{\text {laser beams }}}
$$

Drift Velocity

- Get the drift velocity from a measured data set
- Plot the time slices of all Hits (that belong to tracks: to filter out noise)
- Search for the edge in Z (time slices) and calculate $\mathrm{t}_{\text {max }}$ from this value
- The length $z_{\text {chambermax }}$ of the chamber is known
- Driftvelocity:
$v_{\text {Drift }}=\frac{z_{\text {chambermax }}}{t_{\max }}$

