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Purpose
Being a non-expert, I will focus on very basic principles, 
trying to introduce you, students excluding experts, to 
more advanced topics containing more practical and 
technical aspects to be covered by real experts in this 
school.
Emphasis will be put on concepts and philosophy, and 
hence practical examples will be minimum, for them 
take a look at excellent text books such as

           V.Palldino & B.Sadoulet 1974: LBL-3013
           F.Sauli 1977: CERN 77-09
           W.Blum & L.Rolandi 1993
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Subjects to be Covered
Liberation of electrons by ionization (dE/dx)

Classical theory of electron transportation in a 
chamber gas and its applications

Behaviors of electrons in E and B fields

Transport coefficients: Vd, Cd

Gas amplification

Creation of signals

Coordinate measurement



Subjects Left Out
Electron attachment

CF4, O2 contamination, etc.

Transportation of ions

+ve ion feed back

Ion exchange and aging

These are very important in practice, but simply beyond the 
scope of my lectures. 



Classical Theory of 
Electrons in a Gas



Boltzmann Equation
Basic Equation Governing Electron Transportation 

We often see formulae for electron drift and diffusion as derived 
from it, so it must be useful, but itself is rarely discussed in an 
usual introductory text books.
So, what is it?
Where does it come from?
And how?

I can only show you a rough sketch, but I hope it will make you feel 
a little bit more comfortable when you see it next time.
For (older) pragmatic people, it might become a little bit boring, but 
maybe it’s OK even for them to recall their student time.

We will find that THE KEY WORD IS “PROJECTION”! 

“PROJECTION” is a technique to forget about 
unwanted details and make life easy! 



Phase Space
Our system of interest

Ionization electrons drift and diffuse independently
It suffices to consider a single electron in a gas consisting of N 
gas molecules in a chamber (note: N is a huge number).

Stage where solutions dance, we only see their shadows

sample 
point (a)

Phase Space

Solution Lines
(Xa,P a)

6(N + 1)-dim.

x = X0

p = P 0

Electron’s Sub-Space

Projection

Molecules’
Sub-Space

Projection = Coarsification
              = information loss

Microscopic Picture
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Causal deterministic motion by
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Macroscopic Picture
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Motion of a phase space point: 

satisfies

                          with

Liouville’s Theorem
Solutions flow as perfect incompressible fluid 

Hamiltonian Equation of Motion

Write its formal solution as

then this is a 1-to-1 map because 
of the uniqueness of solution

Time Evolution Operator

Φ =
(

X
P

)

Φ̄ =
(

P
−X

)
Φ̇ =

∂H

∂Φ̄T

Φ(t) = D(t)Φ(0)

D(0) = 1
D(−t)D(t) = D(t− t) = D(0) = 1

D(t1)D(t2) = D(t1 + t2)

D(t) forms an Abelian group

Liouville’s Theorem

The map preserves phase space volume

Liouville’s Equation
ρ(Φ; t) = ρ(X,P ; t) State density 

function

0 =
∂

∂t
ρ +

∂H

∂Φ̄
∂

∂ΦT ρ

J(t) = det
(

∂D(t)Φ
∂Φ

)
= 1



Proof of Liouville’s Eq.
Proof is easy enough to give here

Derivation of Liouville’s Equation

0 =
d

dt
ρ =

∂H

∂Φ̄
∂

∂ΦT ρ +
∂

∂t
ρ

d

dt
A(Φ; t) = Φ̇

∂

∂ΦT A(Φ; t) +
∂

∂t
A(Φ; t)

=
∂H

∂Φ̄
∂

∂ΦT A(Φ; t) +
∂

∂t
A(Φ; t)

In general, for any observable A:

Since Liouville’s theorem requires that 
the state density stays unchanged, 
which implies

Proof of Liouville’s Theorem
Equation of motion says

This is actually a continuity equation in 
the full phase space of the system or 
conservation of probability:

D(dt)Φ = Φ + dt Φ̇ = Φ + dt
∂H

∂Φ̄T

∂D(dt)Φ
∂Φ

= 1 + dt
∂2H

∂Φ̄T
∂Φ

resulting in

We hence have
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)
= 1 + dt Tr

(
∂2H

∂Φ̄T
∂Φ

)
+ O

(
(dt)2

)

= 1 + O
(
(dt)2

)

1
dt

(J(dt)− 1) =
1
dt

(J(dt)− J(0)) =
d

dt
J(0) = 0

d

dt
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t1→t

∂

∂t
det

[(
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∂ D(t1)Φ

) (
∂ D(t1)Φ

∂ Φ
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∂

∂t

[
det

(
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∂ D(t1)Φ

)]
·
[
det

(
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∂ Φ

)]

=
[

d

dt
J(0)

]
· J(t1) = 0

which leads us to

∴ J(t) = 1

∫
d6(N+1)Φ ρ(Φ; t) = 1



State Density Function
All we know about the ensemble 

The bundle of solution lines forms a 
manifold consistent with constraints 
imposed upon the system such as 
conservation of total energy and 
chamber volume boundaries

Projection = Coarsification
              = information loss

Microscopic Picture
Once an initial distribution is given, the state density function evolves 
deterministically according to Liouville’s equation.

Macroscopic Picture
Thermal equilibrium = Equal weight

But how should we fix the initial 
distribution? 
Ergodic hypothesis:
Probability is proportional to phase 
space volume

ρ(Φ; t) = ρ(D(−t)Φ; 0)

Projected volume decides probabilityDynamical variables of interest

Dynamical 
variables to 
be integrated 
out

x = X0

p = P 0

{Xb,P b}

Projection



Maxwellian Distribution
A detour which proves the power of ergodic hypothesis

The strip is actually the 
surface of a 3(N-1)-dim. 
sphere:

State Density Function for Molecules
Ignore the electron, for the moment, and concentrate on the molecules, whose sate density function in thermal 
equilibrium. Good approximation since we can safely assume that the molecules colliding with the electron never 
met it in the past.

Interaction hamiltonian of the molecules has a nonzero 
value only when the inter-molecule distance becomes 
negligibly small compared to its average determined by 
the gas density. 

The phase space points uniformly distribute over the 
surface of a 3N-dim. sphere of radius R=sqrt(Etot) x 
3N-dim. box with a volume L^{3N}. Note that the 
projection of spatial dimension simply gives L^{3N}.
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Projection of Liouville’s Eq.
Electron distribution as the projection of the full state fun. 

Separating the part containing the 
electron’s dynamical variables from the 
rest, we have

Liouville’s Equation
ρ(Φ; t) = ρ(X,P ; t) State density 

function

0 =
∂

∂t
ρ +

∂H

∂Φ̄
∂

∂ΦT ρ

Now project the both sides to the 
electron subspace by integrating out 
molecules’ dynamical variables

f(x,p; t) =
N∏

b′=1

(∫
d6Φb′

)
ρ (x,p; {Φb′} ; t)

fb(x,p;Xb,P b; t) =
∏

b′ !=b

(∫
d6Φb′

)
ρ (x,p;Φb, {Φb′} ; t)

1-body distribution function:

2-body distribution function:

The “molecule only” terms become 
surface integrals upon integration and 
vanish because rho has the same value 
everywhere on the surface.

where we have introduced

Notice that
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[
E +

p

mc
×B

]

0 =
[

∂

∂t
+

p

m
· ∂

∂x
+ F ext · ∂

∂p

]
f

+
N∑

b=1

∫
d3Xb

∫
d3P b F b ·

[
∂

∂p
− ∂

∂P b

]
fb

0 =
[

∂

∂t
+

p

m
· ∂

∂x
+ F ext · ∂

∂p

]
ρ

+
N∑

b=1

F b ·
[

∂

∂p
− ∂

∂P b

]
ρb
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(e < 0)



Collision Term
Time average over the collision period

Collision Term
We move the 2-body term to the R.H.S. 
and call it the collision term: 

for obvious reason. Notice that if it 
were not for this term, the electron 
would have behaved as a single particle in 
external E and B fields.
With this term, however, the projected 
trajectory of the electron will show a 
shaggy apparently random motion, though 
the full trajectory should be smooth and 
causal in the full phase space. 

Noting that the 2-body system can be 
regarded as isolated during the short 
period of collision time and the collision 
motion averaged using the projected H:

(
∂f

∂t

)

coll

= −
N∑

b=1

∫
d3Xb

∫
d3P b F b ·

[
∂

∂p
− ∂

∂P b

]
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H̄2 (x,p;Xb,P b) =

∏
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(∫
d3Xb′

∫
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)
H(Φ)

∏
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d3Xb′

∫
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)

=
p2

2m
+

P 2
b

2Mb
+ UmM (|x−Xb|)

which is none other than the 2-body 
Hamiltonian describing the collision.
Then we have

where             is the 2-body time evolution 
operator and                         

is the 2-body phase space point in question.

D2(t′)

φ2 = (x,p;Xb,P b)

−
∫ t+∆t

2

t−∆t
2

dt′F b ·
[

∂
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− ∂
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]
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∂t′

)
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2

)
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(
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Collision Term (Continued)
Decomposition of 2-body fn. to products of 1-body fns. 

Before and after the collision period of  
the 2-body system, their space coordinates 
don’t change macroscopically, but their 
momenta may seem to jump by a finite 
amount. 
Microscopically, however, the jump is a 
function of the impact parameter and their 
relative momentum and should be causal in 
our classical mechanical treatment.

Probabilistic view point enters upon 
replacing the 2-body state density function 
by the product of the 1-body state density 
functions for the electron and the molecule 
in question.

Notice that the momentum transfer is 
determined by the relative momentum and 
the impact parameter. This replacement 
drops the information on the impact 
parameter by throwing away the coordinate 
information of the molecule. This loss of 
information is the source of the stochastic 
nature of the collision process. 
We hence make the replacement∫

d3Xb →
∫

dσb |v − V b| ∆t

since the volume integral should be taken 
over the region where

D2(−∆t) "= 1

(
p = mv

P b = MbV b

)
−

∫ t+∆t
2

t−∆t
2

dt′F b ·
[

∂

∂p
− ∂

∂P b

]
fb

= fb

(
D2(−∆t)φ2; t−

∆t

2

)
− fb

(
φ2; t−

∆t

2

)

fb(φ2; t) = fb(x,p;Xb,P b; t)
≈ f(x,p; t) Fb(P b; t)

or over the X-section along the expected 
trajectory of the 2-body system.



Collision Term (Continued)
Time average over the collision period

Time Averaged Collision Term
Averaged over the collision time, we get

In what follows we understand the time 
derivative as appropriately averaged over 
the collision period as above, and simply 
write

Since the same kind of molecules should 
contribute equally to the summation (rho 
should be symmetric under exchange of 
the same kind of molecules), we can rewrite 
this to (

∂f

∂t

)

coll

=
∑

k

Nk

∫
d3P

∫
dσk |v − V |

× [f(x,p + ∆q; t) Fk(P −∆q; t)

− f(x,p; t) Fk(P ; t)]

1
∆t

∫ t+∆t
2

t−∆t
2

dt′
(

∂f

∂t

)

coll

=
N∑

b=1

∫
d3P b

∫
dσb |v − V b|

× [f(x,p + ∆q; t) Fb(P b −∆q; t)

− f(x,p; t) Fb(P b; t)]

(
∂f

∂t

)

coll

=
N∑

b=1

∫
d3P b

∫
dσb |v − V b|

× [f(x,p + ∆q; t) Fb(P b −∆q; t)

− f(x,p; t) Fb(P b; t)]

where       is the number of molecules of k-
th kind. Noting 

1 =
∫

d3X

∫
d3P Fk(P ; t) = L3

∫
d3P Fk(P ; t)

we define the density of molecules of k-th 
kind                    and 

F̄k(P ; t) = L3 Fk(P ; t)

nk = Nk/L3

Nk



The Boltzmann Equation
The fundamental equation

where the external force is given by

Then we finally arrive at the Boltzmann 
equation:

and the velocities are defined by

F ext = e
[
E +

v

c
×B

]

p = mv
P = MkV

[
∂

∂t
+

p

m
· ∂

∂x
+ F ext · ∂

∂p

]
f(x,p; t)

=
∑

k

nk

∫
d3P

∫
dσk |v − V |

×
[
f(x,p + ∆q; t) F̄k(P −∆q; t)

− f(x,p; t) F̄k(P ; t)
]

part flowing in part flowing out

p + ∆q

P −∆q

P
p

P

p

P −∆q

p + ∆q

Flowing in

Flowing out

TP = C



Inelastic Scattering
A short comment in passing

So far, we have been assuming that the 
electron-molecule collisions are elastic as 
described by a scattering potential.

If we are to consider inelastic scattering 
involving some change of internal degrees 
of freedom of the colliding molecule, we 
need to expand the phase space to include 
the internal degrees of freedom and then 
project out these internal degrees of 
freedom as needed.
The resultant loss of information can again 
be taken statistically into account as the 
form of the inelastic cross section.

We can hence regard the Boltzmann eq. as 
the one after this extra projection.

The Boltzmann equation, as it is, can hence 
be applied to those more general cases.

In practice, however, the inclusion of 
inelastic processes complicate the 
treatment significantly, since we can no 
longer assume that the relative speed 
stays the same before and after the 
collision. 

After all, the physics that controls the 
electron transport in a gas lies in the 
collision term, and  that’s where all the 
complications come from. Calculating the 
properties of complex molecules from the 
1st principle (=Q.M.) is often impracticable. 



Transport Coefficients
Things you want to derive from the Boltzmann Equation

We often see formulae for electron drift and diffusion as derived 
from the Boltzmann equation, but they are given almost always 
without proof. 
Where do they come from?
And how?

I can only show you a rough sketch, but I hope it will make you feel 
a little bit more comfortable when you see them next time.
Some of you, pragmatic people might already have been pretty much 
fed up, but be patient recalling your student time.

Again we will find  THE KEY WORD IS “PROJECTION”! 

“PROJECTION” makes life easy! 



The Boltzmann Equation
From now on we will work in velocity space

where the external force is given by

The Boltzmann equation in (x,v) space is 
readily read out from its (x,p) version:

and the velocity changes must satisfy

F ext = e
[
E +

v

c
×B

]

part flowing in part flowing out

Flowing in

Flowing out

TP = C

V

V +∆V

v + ∆v

v

[
∂

∂t
+ v · ∂

∂x
+

F ext

m
· ∂

∂v

]
f(x,v; t)

=
∑

k

nk

∫
d3V

∫
dσk |v − V |

×
[
f(x,v + ∆v; t) F̄k(V + ∆V ; t)

− f(x,v; t) F̄k(V ; t)
]

∆q = m∆v = −Mk∆V

v

V +∆V

V

v + ∆v

Before moving on, it is worth noting that 
the Boltzmann eq. implies a scale between 
the gas density and the field strengths for 
steady state solutions having no (x;t) 
dependence.



Velocity Space
Decomposition of f(x,v;t) to n(x;t) fbar(v;x,t)

The probability density of finding the 
electron in the vicinity of x is given by

n(x; t) =
∫

d3v f(x,v; t)

With this, we can define the velocity 
distribution function by

f̄(v;x, t) := f(x,v; t) / n(x; t)

By definition this must satisfy the 
normalization condition:

as is obvious by integrating both sides of 
the following over velocities

f(x,v; t) = n(x; t) f̄(v;x, t)

Putting this into the Boltzmann equation, 
we have

Notice that on the R.H.S. (collision term),  
n(x,;t) has been factored out, since the 
collision is a very local phenomenon.

It is tempting to assume that fbar will soon 
become independent of position and time 
due to random collisions with molecules, but 
this turns out incorrect as we will see next.

∫
d3v f̄(v;x; t) = 1

[
∂

∂t
+ v · ∂

∂x
+

F ext

m
· ∂

∂v

] (
n f̄

)

= n(x; t)
∑

k

nk

∫
d3V

∫
dσk |v − V |

×
[
f̄(v + ∆v;x, t) F̄k(V + ∆V ; t)

− f̄(v;x, t) F̄k(V ; t)
]



Simple Minded Factorization
f(x,v;t) = n(x;t) fbar(v) does not work!

If we assume a simple minded factorization

and integrate the both sides of the B.Eq. 
over the electron positions, noting

The 1st term on the R.H.S. is zero since it 
becomes a surface integral where n=0. 
Combining this with the eq. on the left page
yields 

Integrating both sides of the B.Eq. over 
the electron velocities, we have

where
〈v〉 :=

∫
d3v f̄(v;x, t) v

is the local average velocity, which is in 
general position dependent.

f(x,v; t) ≈ n(x; t) f̄(v)

we have

∫
d3x n(x; t) = 1

[
∂

∂t
+ 〈v〉 · ∂

∂x

]
n(x; t) = 0

which implies a simple drift w/o diffusion, 
possible only if n is uniformly distributed.

[
∂

∂t
+

∂

∂x
· 〈v〉+

∫
d3v

F ext

m
· ∂f̄

∂v

]
n(x; t)

= n(x; t)
∫

d3v
∑

k

nk

∫
d3V

∫
dσk |v − V |

×
[
f̄(v + ∆v;x, t) F̄k(V + ∆V ; t)

− f̄(v;x, t) F̄k(V ; t)
]

∫
d3x

∂

∂x
· v

(
nf̄

)
+

F ext

m
· ∂

∂v
f̄

=
∑

k

nk

∫
d3V

∫
dσk |v − V |

×
[
f̄(v + ∆v;x, t) F̄k(V + ∆V ; t)

− f̄(v;x, t) F̄k(V ; t)
]



Concept of Velocity Shell
Towards more realistic solutions to the B.Eq.

We will then consider the velocity space in 
a spherical coordinate system: 

v

Ω = (cos θ, φ)

We will hence be forced to retain the time 
and position dependence in fbar and think 
about another way of approximation.

The Basic Idea
The motion of the electron is dominated by  
random and almost isotropic velocity with a 
small modulation (drift velocity) due to the 
external E and B fields.

We hence consider a fraction of the phase 
space where the electron has speed in the 
range (v, v+dv), a shell of a 3-dim sphere in 
the velocity space.
For the class of phase space points in the 
velocity shell, the distribution should be 
almost isotropic with the small modulation.

The Velocity Shell

v3

v1

v2

θ
φ

The 3rd axis in the 
direction of the average 
velocity of the shell

〈v〉shell



Harmonic Expansion
Expansion in terms of spherical harmonics

Since we took the 3rd axis in the direction 
of the average velocity of the shell, this 
implies

Harmonic Expansion
In each velocity shell, we expand fbar in 
terms of spherical harmonics as

f̄(v;x, t) =
∞∑

l=0

m=+l∑

m=−l

Y m
l (θ, φ) f̄m

l (v;x, t)

The distribution will then be dominated by 
low l spherical harmonics,
     l=0 (scalar=monopole) : dominant
     l=1 (vector=dipole) : drift

Average shell velocity

f̄−1
1 = f̄1

1 = 0

Ignoring l>1 terms, we can put

where 
f1(v;x, t) :=




0
0
f1





f̄(v;x, t) ≈ f0(v;x, t) + f1(v;x, t) cos θ

= f0(v;x, t) + f1(v;x, t) ·
(v

v

)

〈l m| [Object]〉 =
∫

dΩ (Y m
l )∗ [Object]

Notation

The average shell velocity then becomes 

〈v〉Ωv
=

∫
dΩv v f̄(v;x, t)

/ ∫
dΩv f̄(v;x, t)

=
v√
6 f̄0

0




f̄−1
1 − f̄1

1

−i (f̄−1
1 + f̄1

1 )√
2 f̄0

1





〈v〉Ωv
=

vf1

3f0



Harmonic Expansion
Projection of B.Eq. to harmonic components

Harmonic Expansion of B.Eq.
All we need to do is to put

The Scalar Equation (l=0)

into the Boltzmann equation, and project 
out l=0 (scalar) and l=1 (vector) components

f̄(v;x, t) ≈ f0(v;x, t) + f1(v;x, t) cos θ

= f0(v;x, t) + f1(v;x, t) ·
(v

v

)

〈0 0| [B.E.]〉 = Scalar Eq.
〈1 0| [B.E.]〉 = Vector Eq.

This projection is a tedious but doable 
mathematical exercise, at least for the 
L.H.S. of the Boltzmann equation. All you 
need to know is the composition rules of 
the spherical harmonics, which you must 
have learned in a Q.M. course.

I just show the results of the exercise.

where           is in general a complicated fn.  
If collisions are all elastic, a concrete 
formula is known (c.f. Huxley & Crompton)

∂

∂t
(nf0) +

v

3
∂

∂x
·(nf1) +

1
4πv2

∂

∂v

[
4π

3
v2 eE

m
·nf1

]

= n
∑

k

nk
1

4πv2

∂

∂v
σ̄m,k(v; [f0])

n nk σ̄m,k(v; [f0])

= 4πv2n nk v σm,k(v)

[
m

Mk
v f0 +

〈
V 2

〉

3
∂f0

∂v

]

effective collision frequency
νm,k := nk v σm,k(v)

σ̄m,k

The scalar equation can be interpreted as 
the continuity equation expressing energy 
conservation.



Harmonic Expansion
Projection of B.Eq. to harmonic components (continued)

Momentum Transfer X-Section
The collision term is characterized by a 
quantity called the momentum transfer 
cross section.
It is defined in general by

The Vector Equation (l=1)

where

The vector equation can be interpreted as 
the continuity equation expressing 
momentum conservation.

where      and      are relative speeds of 
electrons in the molecule rest frame 
before and after the collision, and their 
ratio is unity for elastic scattering, and

vr v′
r

σ1,k =
∫

dσk cos θ

σ0,k =
∫

dσk

θ

σm,k = σ0,k −
v′

r

vr
σ1,k

p σm,k =
∫

dσk p (1− cos θ)

ν̄m :=
∑

k

nk v σm,k(v) : effective coll. freq.

ω :=
(−e)B

mc : cyclotron freq. vec.

Notice that the electron charge is -ve, 
hence (-e) is +ve. 

∂

∂t
(n f1) + v

∂

∂x
(n f0) +

eE

m

∂

∂v
(n f0)− ω × (n f1)

= −ν̄m(v) (nf1)



Vector Equation
Interpretation of Vector Eq.

The effective collision frequency is related 
to mean free time

path length

τ =
1

ν̄m

Multiplying the both sides of the vector eq. 
by tau with with this in mind makes the 
meanings of the vector eq. clearer.

τ
∂

∂t
(n f1) + (τ v)

∂

∂x
(n f0) +

(
τ

eE

m

)
∂

∂v
(n f0)− (ω τ)× (n f1) = − (nf1)

change of 
distribution 
during tau

velocity increase 
during tau

rotation during tau

velocity change by 
a single collision

This part remains even after the steady 
state is reached and hence should be kept 
as significant.

Can be large 
for a point 
source

Quickly become 
small after injection

On the other hand the total momentum of 
the velocity shell (v,v+dv) is

dptot = (4π v2dv) (n f0) m
v f1

3 f0
=

4π v2dv

3
m v (n f1)



Vector Equation
Separation of Drift and Diffusion

The Vector Equation

We assume that the 1st term (t-derivative) 
is negligible compared with the rest. This 
assumption implies that the electron is in a 
quasi-equilibrium at least locally.
Then we have

We now decompose f1 as 
f1 = fE + fG

to separate the vector eq. into the 
following two:

v
∂

∂x
(n f0) +

eE

m

∂

∂v
(n f0)− ω × (n f1)

≈ −ν̄m(v) (nf1)

∂

∂t
(n f1) + v

∂

∂x
(n f0) +

eE

m

∂

∂v
(n f0)− ω × (n f1)

= −ν̄m(v) (nf1)

ν̄m(v) (nfE)− ω × (n fE) = −eE

m

∂

∂v
(n f0)

ν̄m(v) (nfG)− ω × (n fG) = −v
∂

∂x
(n f0)

Notice that these are linear equations 
of the form

that can be solved by matrix inversion, 

once f0 is given.
Notice also that upon the integration over 
x  the contribution from fG must vanish.

[ ν̄m(v)− ω× ]
(
n fE/G

)
= [fn. of f0]

(
n fE/G

)
= [ ν̄m(v)− ω× ]−1 [fn. of f0]

[ ν̄m(v)− ω× ]
∫

d3x (n fG)

= −v

∫
d3x

∂

∂x
(n fG)

= Surf. int. = 0



Vector Equation
Separation of Drift and Diffusion

with

Notice that W is a function of the speed v 
and the position of the electron, and the 
average over the whole phase space sample 
is given by 

We can hence rewrite the average velocity 
of the shell as

Now recall that f1 is related to the drift 
velocity of the shell through

This means that the fG and hence WG does 
not contribute to the average velocity of 
the whole ensemble:

W E/G :=
vfE/G

3f0

〈v〉 = 〈W E〉

〈W G〉 = 0
and

We can hence interpret WE as  the drift 
velocity due to the external field and WG 
as the convection velocity due to diffusion 
of the velocity shell at a given spatial point. 

We will hence concentrate on WE for our 
discussions on the drift velocity v_D, while 
for our discussions on the diffusion we will 
focus on WG, which is our next task.

〈v〉Ωv
=

vf1

3f0

〈v〉Ωv
=: W = W E + W G

〈v〉 =
∫

d3x

∫
(4π)v2dv (n f0)W

=
∫ (

4π

3

)
v3dv

∫
d3x (n f1)



Drift Velocity
Mobility Matrix

We start from the equation for fE, which 
can be rewritten with WE as

Recall your linear algebra course, then the 
reciprocal of the matrix M is given by

Notice that n(x;t) does not depend on v and 
hence can be cancelled out. 
We now introduce a matrix [M]: 

f0 [ ν̄m(v)− ω× ]W E = −v

3

(
∂

∂v
f0

)
eE

m

where use has been made of a shorthand:

ν̄m(v)→ ν

For notational convenience, we will use this 
abbreviation in what follows.
Now all we need to do is a matrix inversion.

det [M]with 
ω2 := ω2 = ω2

1 + ω2
2 + ω2

3

and 
ω :=

(−e)B
mc

WE can now be written as

which can be averaged over v to give

[M ]−1 =




ν2 + ω2

1 ω1ω2 − νω3 ω1ω3 + νω2

ω2ω1 + νω3 ν2 + ω2
2 ω2ω3 − νω1

ω3ω1 − νω2 ω3ω2 + νω1 ν2 + ω2
3





÷ ν
(
ν2 + ω2

)

f0 W E = −v

3

(
∂

∂v
f0

)
[M ]−1

(
eE

m

)

〈W E〉v (x; t) :=
∫

(4π)v2dv f0 W E

= [µ]E

[M ] := [ ν̄m(v)− ω× ]

=




ν ω3 −ω2

−ω3 ν ω1

ω2 −ω1 ν







Drift Velocity
Mobility Matrix (continued)

We introduced the local mobility matrix:

The matrix [M] becomes “nu” and hence 
the [mu*] becomes a single number:

The Mobility Matrix

which is in general a function of (x;t).
To get the position-averaged mobility 
suitable for the centroid motion, we define

f∗
0 (v; t) :=

∫
d3x (n f0)

and the (global) mobility matrix:

〈W 〉 = 〈W E〉 = [µ∗]E

With this, we can write

Notice that the mobility matrix is 
proportional to a unit matrix if B=0.

Special Case [1] (B=0)

µ∗ = −4πe

3m

∫ ∞

0
dv

v3

ν

(
d

dv
f∗0

)

If there is a B-field, the mobility matrix 
will acquire nonzero off-diagonal elements 
and hence the direction of the E-field and 
the direction of the drift velocity will 
differ (so-called Lorentz angle effects).

The drift direction should be anti-parallel 
with the E-field. This suggests that the 
integral should be negative, since (e < 0).
Assuming that f*0 has a single peak, and 
the integral weights more on the higher 
side of the peak, it is indeed so.

[µ] := −4πe

3m

∫
dv v3

(
∂

∂v
f0

)
[M ]−1

[µ∗] := −4πe

3m

∫
dv v3

(
d

dv
f∗0

)
[M ]−1



Drift Velocity
Mobility Matrix (continued)

This is the case of our interest. Assuming 
that E and B are in the 3-axis direction, 
then 

and the inverse of [M] becomes

Special Case [2] (B//E)
If the velocity distribution can be taken as 
a delta function:

ω =




0
0
ω





[M ]−1 =
1

ν (ν2 + ω2)




ν2 −νω 0
νω ν2 0
0 0 ν2 + ω2





But the E-field has no 1- or 2- components, 
there will be no 1- or 2-components in the 
drift velocity, either. Moreover, the 3rd 
component coincides with the B=0 case.
There is hence no B-field effect on the 
drift velocity in the E//B case.

Special Case [3] (v-dist=delta fn.)

f∗
0 =

1
4πv2

δ(v − v̄)

Putting this into the def. of the mobility 
matrix, we have

The mobility matrix is thus parameterized 
by just two parameters, the collision freq. 
at vbar and the cyclotron frequency.

[µ∗] = −4πe

3m

∫
dv v3

(
d

dv
f∗0

)
[M ]−1

= −4πe

3m
[M ]−1(v̄)

∫
dv

[
d

dv

(
v3 f∗0

)

− d

dv

(
v3

)
f∗0

]

=
4πe

m
[M ]−1(v̄)

∫
dv v2 f∗0 =

e

m
[M ]−1(v̄)



Mean Free Time
Mobility Matrix (continued)

Case (3) formula is usually obtained by 
time-averaging the Newtonian equation of 
motion.

Usual Simplistic Arguments

m
dv

dt
= e

[
E +

v

c
×B

]
+ F coll

We define the time average of a variable A 
to be 

Upon this time average, the L.H.S. of the 
Newtonian eq. vanishes, since we are 
considering a bounded motion for which the 
velocity stays finite. We hence have

0 = e

[
E +

〈v〉t
c

× B

]
+ 〈F coll〉t

Notice that there appears the mean free 
time and the average momentum transfer.
The momentum transfer averaged over all 
angles is easy to get for isotropic collisions

We now need to evaluate the time average 
of the collision force:

〈F coll〉t = lim
T→∞

1
T

∫ T

0
dt F coll

= lim
N→∞

1
∑N

i=1 ∆Ti

N∑

i=1

∫ ti

ti−1

dt F coll(t)

= lim
N→∞

1
∑N

i=1 ∆Ti/N

1
N

N∑

i=1

∫ ti+ δt
2

ti− δt
2

dt F coll(t)

=
1
τ

lim
N→∞

1
N

N∑

i=1

m ∆v =
1
τ

〈m∆v〉

〈m∆v〉Ω =
∫

dΩ
4π

m∆v

= −
∫

d cos θ

2
m v (1 − cos θ) = −m v

〈A〉t := lim
T→∞

1
T

∫ T

0
dt A(t)



Mean Free Time
Mobility Matrix (continued)

This is a simple linear equation, and can be 
solved by matrix inversion as we did, and 
yields the formula you often see in the 
text book

The Drift Velocity Formula

This formula can hence be regarded as the 
limiting case of the delta function like v 
distribution.
We can also rewrite the Langevin equation 
in the following form

Collecting things together, we arrive at the 
time-averaged Langevin equation:

We can think of the average that appears in

〈F coll〉t =
1
τ

lim
N→∞

1
N

N∑

i=1

m ∆v =
1
τ

〈m∆v〉

being first taken over scattering angles for 
each group with  nearly the same momentum 
and then over such groups. Then we have

〈F coll〉t = −1
τ

m 〈v〉

[
1
τ
− (−e)B

mc
×

]
〈v〉 =

eE

m

Notice that 1/tau=nu and

ω :=
(−e)B

mc
tell us that the content of the square 
bracket is the same [M] we met before.

〈v〉 =
(

µE

1 + (ωτ)2

) (
Ê + (ωτ)

[
Ê × B̂

]
+ (ωτ)2

(
Ê · B̂

)
B̂

)

[1− ω τ×] 〈v〉 =
e τ

m
E

µThis implies 
[1− ω τ×] 〈v〉 · 〈v̂〉 = |〈v〉| =

e τ

m
E · 〈v̂〉

which is known as Tonk’s theorem.



Diffusion 
Diffusion Tensor

So far we have been discussing WE (or 
equivalently fE), the drift due to the 
external fields. 
We now turn our attention to the vector 
eq. for WG (fG), which can be cast into the 
form:

Notice that this time, since n(x;t) depends 
on x, we cannot cancel out n. Nevertheless,  
there appears the same matrix [M]: 

det [M]with 
ω2 := ω2 = ω2

1 + ω2
2 + ω2

3

and 
ω :=

(−e)B
mc

The solution is then

which can be averaged over v to give
[M ] := [ ν̄m(v)− ω× ]W E

=




ν ω3 −ω2

−ω3 ν ω1

ω2 −ω1 ν





[M ]−1 =




ν2 + ω2

1 ω1ω2 − νω3 ω1ω3 + νω2

ω2ω1 + νω3 ν2 + ω2
2 ω2ω3 − νω1

ω3ω1 − νω2 ω3ω2 + νω1 ν2 + ω2
3





÷ ν
(
ν2 + ω2

)

(n f0) [ ν̄m(v)− ω× ]W G = −v2

3

(
∂

∂x
(n f0)

)

and hence with the same inverse matrix:

(n f0) W G = −v2

3
[M ]−1

(
∂

∂x
(n f0)

)

= −4π

3

∫
v2 dv v2 [M ]−1

(
∂

∂x
(n f0)

)
n 〈W G〉 (x; t) :=

∫
(4π)v2dv (n f0) W G



Diffusion 
Diffusion Matrix

Crucial step is to replace f0 on the R.H.S. 
by f0*:

so that we can take out f0* out of the 
spatial derivative and get 

det [M]

with 
ω2 := ω2 = ω2

1 + ω2
2 + ω2

3

and 
ω :=

(−e)B
mc

The approximation 

[M ]−1 =




ν2 + ω2

1 ω1ω2 − νω3 ω1ω3 + νω2

ω2ω1 + νω3 ν2 + ω2
2 ω2ω3 − νω1

ω3ω1 − νω2 ω3ω2 + νω1 ν2 + ω2
3





÷ ν
(
ν2 + ω2

)

with the diffusion matrix [D] given by

f∗
0 (v; t) :=

∫
d3x (n f0)

[D] =
4π

3

∫
v2 dv v2 [M ]−1 f∗0

The inverse of [M] is as before:

allowed us to define the diffusion matrix 
[D] that satisfies the usual definition

∂

∂x
(n f0) ≈ f∗

0
∂

∂x
(n)n 〈W G〉v = − [D]

∂

∂x
n

n 〈W G〉v = − [D]
∂

∂x
n

current density
(w/o common drift ) grad (density)

There is some subtlety in this approx. but 
we will not get into it.



Diffusion 
Diffusion Matrix (continued)

where the collision frequency is given by

The matrix [M] becomes “nu” and hence 
the [D] becomes a single number:

Special Case [1] (B=0)

ν =
∑

k

nk v σm,k(v)

D =
4π

3

∫
dv

v4

ν
f∗
0 (v)

The diffusion is hence isotropic (as long as 
the approximation is valid) and inversely 
proportional to gas density and X-section.

We can hence rewrite the diffusion 
constant as

D =
1
3

∫
dv

(4πv2)f∗
0 (v)∑

k nk vσm,k(v)
v2

Special Case [2] (B//E)
This is the case of our interest. Assuming 
that E and B are in the 3-axis direction, 
then 

and the inverse of [M] becomes

[M ]−1 =
1

ν (ν2 + ω2)




ν2 −νω 0
νω ν2 0
0 0 ν2 + ω2





ω =




0
0
ω





DL =
1
3

∫
dv

(4πv2)f∗
0 (v)

ν
v2

DT =
1
3

∫
dv

(4πv2)f∗
0 (v) ν

ν2 + ω2
v2

= D33

= D11,22

D12 = −D21 =
1
3
−

∫
dv

(4πv2)f∗
0 (v) ω

ν2 + ω2
v2

Then we have

All the other components are zero.



Diffusion 
Diffusion Matrix (continued)

DL =
1
3

∫
dv

(4πv2)f∗
0 (v)

ν
v2

DT =
1
3

∫
dv

(4πv2)f∗
0 (v) ν

ν2 + ω2
v2

= D33

= D11,22

D12 = −D21 =
1
3
−

∫
dv

(4πv2)f∗
0 (v) ω

ν2 + ω2
v2

Notice that the longitudinal diffusion const.

is the same as with the B=0 case.
On the other hand, the transverse one

is reduced by a factor

in the integrand. Where the tau, being the 
inverse of the collision frequency, is the 
mean free time between collisions.

ν2

ν2 + ω2
=

1
1 + (ωτ)2 τ =

1
ν

with

corresponds to rotation about the field axis 
but it is not of our interest.

If the velocity distribution can be taken as 
a delta function:

Special Case [3] (v-dist=delta fn.)

f∗
0 =

1
4πv2

δ(v − v̄)

Putting this into the def. of the diffusion 
matrix:

[M ]−1 =




ν2 + ω2

1 ω1ω2 − νω3 ω1ω3 + νω2

ω2ω1 + νω3 ν2 + ω2
2 ω2ω3 − νω1

ω3ω1 − νω2 ω3ω2 + νω1 ν2 + ω2
3





÷ ν
(
ν2 + ω2

)

[D] =
4π

3

∫
v2 dv v2 [M ]−1 f∗0

with the inverse of [M] given by

we have
[D] =

1
3

v̄2 [M ]−1(v̄)

If B=0, this implies a naive expectation

[D] =
1
3

v̄2τ =
1
3

(v̄τ)2

τ



Scalar Equation
We need to solve the scalar equation, too

What We Have Done So Far

    which means diffusion does not 
    contribute to the drift velocity of the 
    centroid, as naively expected.

a) We have shown that 
〈v〉 = 〈W E〉〈W G〉 = 0 and, hence

b) We have defined the mobility matrix for 
    the centroid 

〈W 〉 = 〈W E〉 = [µ∗]E

   with which, we can write

[µ∗] := −4πe

3m

∫
dv v3

(
d

dv
f∗0

)
[M ]−1

[M ]−1 =




ν2 + ω2

1 ω1ω2 − νω3 ω1ω3 + νω2

ω2ω1 + νω3 ν2 + ω2
2 ω2ω3 − νω1

ω3ω1 − νω2 ω3ω2 + νω1 ν2 + ω2
3





÷ ν
(
ν2 + ω2

)

c) We have also defined the diffusion matrix 

[D] =
4π

3

∫
v2 dv v2 [M ]−1 f∗0

     with which the convection current due to
     diffusion is given by

n 〈W G〉v = − [D]
∂

∂x
n

Remaining Questions
a) How should we relate [D] to the electron 
    cloud size? In other words, we need to   
    know the spatial distribution, n(x;t).
b) How can we determine f0*?

In order to answer these questions, we now 
need to look at the scalar equation.

These results came solely from the vector 
equation, and f0* remains as unknown.



Scalar Equation
Derivation of Diffusion Equation

The Diffusion Equation

∂

∂t
(nf0) +

v

3
∂

∂x
·(nf1) +

1
4πv2

∂

∂v

[
4π

3
v2 eE

m
·nf1

]

= n
∑

k

nk
1

4πv2

∂

∂v
σ̄m,k(v; [f0])

we v-integrate the both sides to get

σcoll :=
∑

k

nk σ̄m,k

σE :=
4π

3
v2 eE

m
· nf1

By defining

and

we can rewrite it in the following form
∂

∂t
(nf0) +

v

3
∂

∂x
·(nf1) = − 1

4πv2

∂

∂v
(σE − σcoll)

Recalling ∫
d3v f0 =

∫
(4πv2)dv f0 = 1

f∗
0 (v; t) :=

∫
d3x (n f0)

〈v〉Ωv
=

vf1

3f0

∂

∂t
n +

∂

∂x
·
(

n

∫
(4πv2) dv f0

vf1

3f0

)
= 0

where the R.H.S. is a surface integral.
Recall also the shell averaged velocity 
formula

then the quantity in the parentheses is the 
current density at (x; t)

n

∫
(4πv2) dv f0

vf1

3f0
= n 〈W 〉v

The above equation now becomes
∂

∂t
n +

∂

∂x
(n 〈W 〉v) = 0

which is none other than the usual equation 
of continuity.

We hence start from the scalar equation



Scalar Equation
Derivation of Diffusion Equation

In to this continuity equation:
∂

∂t
n +

∂

∂x
(n 〈W 〉v) = 0

we can now put
n 〈W 〉v = n 〈W E〉v + n 〈W G〉v

recalling

and
n 〈W G〉v = − [D]

∂

∂x
n

We then obtain

〈W E〉v = [µ]E ≈ [µ∗]E = 〈v〉

∂

∂t
n + 〈v〉 · ∂

∂x
n −

(
∂

∂x

)T

[D]
(

∂

∂x

)
n = 0

which is none other than the diffusion eq.
as you transform this into a more familiar 
form if [D] is a constant D times a unit 
matrix

∂

∂t
n + 〈v〉 · ∂

∂x
n − D

(
∂

∂x

)2

n = 0

In the co-moving frame of the centroid 
(                      ), this becomes

∂

∂t
n−D

(
∂

∂x′

)2

n = 0

x′ = x − 〈v〉 t

The solution to this equation with the point 
source initial condition is given by

n =

(
1√

2π(2Dt)

)3

exp
[
− x′2

2(2Dt)

]

This implies that the electron cloud will 
have a Gaussian spread given by

σ2
x = 2Dt

after created as a point-like cluster.

OK, now the remaining task is f0*!



Scalar Equation
Equation for f0*

Velocity Distribution Function Ignoring the time derivative assuming that 
the electron’s velocity distribution reaches 
a steady state in a short time, this reads∂

∂t
(nf0) +

v

3
∂

∂x
·(nf1) = − 1

4πv2

∂

∂v
(σE − σcoll)

f∗
0 (v; t) :=

∫
d3x (n f0)

We again start from the scalar equation

This time we integrate out x, since we are 
now interested in the velocity distribution

Upon this integration the 2nd term of the 
L.H.S. vanishes since it becomes a surface 
integral where the electron is absent. 
Noting that the R.H.S. is a function of f0 
and this spatial integration replaces f0 by 
f0*, we have

∂

∂t
f∗
0 = − 1

4πv2

∂

∂v
(σ∗

E − σ∗
coll)

0 = − 1
4πv2

∂

∂v
(σ∗

E − σ∗
coll)

The equation expresses the balance 
between the external force and the 
collision force. The concrete form of the 
collision term depends on the nature of the  
molecules in the gas in question and hence 
the concrete form of the equation also 
depends on it. When only elastic collision is 
there, it is known (c.f. Huxley & Crompton) 
that the equation becomes 

(
u2 +

〈
V 2〉) d

dv
f∗
0 +

3 m v

M
f∗
0 = 0

u :=
eE

m ν
=

eE

m
τ

with



Scalar Equation
Solution for f0* (elastic only case)

The equation for f0* for a monatomic gas 
and for elastic collisions only

(
u2 +

〈
V 2〉) d

dv
f∗
0 +

3 m v

M
f∗
0 = 0

u :=
eE

m ν
=

eE

m
τ

with

has the solution

f∗
0 (v) = A exp

[
−3m

M

∫ v

0

v dv

u2 +
〈
V 2〉

]

In this case u=0, and since

Solution for f0*

Special Case I (E=0)
〈

1
2

M V 2

〉
=

3
2

kB T

we end up with

f∗
0 (v) = A exp

[
−m v2/2

kB T

]

which is none other than the Maxwellian 
distribution as expected.

Special Case II (nu/v=const.)
When the collision frequency divided by v 
or equivalently the cross section can be 
regarded as constant within the range 
where f0* is significant, we have instead

f∗
0 (v) = A exp

[
−

( v

α

)4
]

with
α4 =

4 M

3 m

(
e

m

E/nM

σm

)2

This is called a Druyvesteyn distribution 
and has a sharper peak than the Maxwellian. 



Cross Section Shape
How sigma_m behaves?

The most popular chamber gas is Ar, so 
let’s try an order of magnitude estimation 
of the electron-Ar cross section.
Ar has an atomic number A=18 with the 
first 3 shells filled up. Its a perfectly 
symmetric molecule and hence the remnant 
electric field dies away very quickly.  The 
scattering cross section is therefore 
largely determined by the size of the 
outermost orbit. The electron in the 
outermost orbit experiences the attractive 
force from the nucleus largely shielded by 
the other electrons. 
Let’s assume that because of this shielding,
the electron only feels the net charge of 1 
unit of (-e). 

Order of Magnitude Estimate The orbit radius can then be approximated 
as exactly as with a hydrogen atom for n=3. 

σAr ! π r(3)2

! π (1.5× 10−8 [cm])2

= 7.1× 10−16 [cm2]
But the life is not so simple, This gives a 
kind of upper limit, and the real X-section 
can be much smaller because of the so 
called Ramsauer effect, a QM effect.

The interference makes a dip below the 
resonance peak!

r(n) ! !
mcαQED

n

! (0.5× 10−8 [cm])× 3

= 1.5× 10−8 [cm]

σAr ∝

∣∣∣∣∣

√
σ0

Ar + A
1

ε− εr + iΓr
2

∣∣∣∣∣

2



Ar  Cross Section
That used in Magboltz

σ0
Ar ! π r(3)2

! π (1.5× 10−8 [cm])2

= 7.1× 10−16 [cm2]

εdip !
1
2
m

(cαQED

n

)2
! 1.5 [eV]



Subjects Covered
Liberation of electrons by ionization (dE/dx)

Classical theory of electron transportation in a 
chamber gas and its applications

Behaviors of electrons in E and B fields

Transport coefficients: Vd, Cd

Gas amplification

Creation of signals

Coordinate measurement

Paul

Yulan Li



Subjects Left Out
Electron attachment

CF4, O2 contamination, etc.

Transportation of ions

+ve ion feed back

Ion exchange and aging

These are very important in practice, but simply beyond the 
scope of my lectures. 

Yulan Li

Paul


