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Why We Bother?
Because we lose Neff due to gas gain fluctuation!

Some Naive Questions
  (1) Why Neff < N ?
  (2) Can we improve it?
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Ionization Statistics

We assume here an ideal readout plane that 
can measure the x-coordinates of individual 
track electrons exactly. The probability 
distribution function for the center of 
gravity of N track electrons is given by

PDF for C.O.G. of N electrons
Ideal Readout Plane: Coordinate = Simple C.O.G.

P (x̄) =
∞∑

N=1

PI(N ; N̄)
N∏

i=1

(∫
dxi PD(xi;σd)

)
δ

(
x̄− 1

N

N∑

i=1

xi

)

passed through the TPC at x=0 parallel with 
the readout plane and perpendicular to the 
pad rows.
The center of gravity of the N electrons is 
the best possible estimator of the incident 
x-coordinate of the track

Ideal readout plane

σd = Cd

√

z

x
xiGaussian diffusion

PD(xi;σd) =
1√

2πσd

exp
(
− x2

i

2σ2
d

)

Ionization statistics

σd = Cd
√

z

where Cd is the diffusion coefficient and z 
is the drift length. The track is assumed to

〈x̄〉 :=
∫

dx̄ P (x̄) x̄ = 0

The variance of the C.O.G. is then given by

σ2
x̄ :=

∫
dx̄ P (x̄) x̄2 = σ2

d

〈
1
N

〉
=: σ2

d
1

Neff

by definition. This leads us to

Neff :=
1

〈1/N〉 < 〈N〉

What decides the spatial resolution is not 
the average number of ionization electrons 
but the inverse of the average of its 
inverse. 

3



Gas Gain Fluctuation

We now switch on the gas gain fluctuation 
and assume that the coordinate measured 
by the readout plane is the gain-weighted 
mean of the N ionization electrons.

PDF for gain-weighted mean
Coordinate = Gain-Weighted Mean

Again we assume that the charged particle 
passed through the TPC at x=0 parallel with 
the readout plane and perpendicular to the 
pad rows.
The average of the gain-weighted mean has 
then no bias

Gain-weighted meanGas gain fluctuation

〈x̄〉 :=
∫

dx̄ P (x̄) x̄ = 0

The variance of the C.O.G. is then given by

where use has been made of

The gas gain fluctuation therefore further 
reduces the effective number of electrons.

P (x̄) =
∞∑

N=1

PI(N ; N̄)
N∏

i=1

[∫
dxi PD(xi;σd)

×
∫

d

(
Gi

Ḡ

)
PG

(
Gi

Ḡ
; θpol

)]
δ

(
x̄−

∑N
i=1 Gi xi∑N

i=1 Gi

)

x
xi

Gi

We used the Polya 
parameter as an index
even though the PG is 
non-Polya in general. 
Notice that 

N∑

i=1

Gi ≈ N Ḡ

σ2
x̄ :=

∫
dx̄ P (x̄) x̄2 ≈ σ2

d

〈
1
N

〉 〈(
G

Ḡ

)2
〉

=: σ2
d

1
Neff

N∑

i=1

Gi ≈ N Ḡ

We hence have

Neff :=

[〈
1
N

〉 〈(
G

Ḡ

)2
〉]−1

=
1

〈1/N〉

(
1 + θpol

2 + θpol

)
< 〈N〉

4



Sample Calc. for Neff

Distribution of N 
   (<N> = 71)

Distribution of 1/N 
   (<1/N> = 0.028)

Distribution of Q
    (K = 0.67)

For 4 GeV pion and pad row pitch of 6mm in pure Ar

〈

(

G

Ḡ

)2
〉

= 1 +

(

σG

Ḡ

)2

≡ 1 + K

K =
1

1 + θ

θ = 0.5

M.Kobayashi

Neff =

[

〈

1

N

〉

〈

(

G

Ḡ

)2
〉]

−1

= 21 < 〈N〉 = 71

In the case of Snyder’s model, gain fluctuation is exponential and K=1 (theta=0) and 
the Neff is reduced by a factor of 2 by it. In the case of Legler’s model, theta>0 and 
the reduction is less sever. If we assume theta=0.5, for instance, we have a factor of 
1.5 reduction:
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Alkhazov’s Theory of 
Gas Gain Fluctuation

This is a rather old work but I find it interesting to see 
that a set of simplistic assumptions may give at least 
qualitative explanations and suggestions.  

6



Gas Amplification
Average Gas Gain

The probability per unit length for a seed 
electron in a strong E-field producing an 
additional ionization electron is called the 
first Townsend coefficient (    ). We can 
write the average increase of electrons 
(      ) over a path (    ) to be

Twonsend Coefficient

α

dN ds

dN = N α ds

The Townsend coefficient is determined by 
the cross sections for ionizing collisions or 
excitation collisions leading to secondary 
ionizations through Penning effect or Jesse 
effect. These cross sections are a function 
of the electron’s speed or equivalently its 
energy, which is in turn a function of two 
scaling variables:  “E/(gas density)” and 
“B/(gas density)”, as far as the t-and x-

derivatives of the electron state density 
function on the R.H.S. of Boltzmann eq. can 
be ignored. 
Then the Townsend coefficient, having the 
dimension of inverse length, must scale 
with the mean free path inverse and hence 
should be proportional to the gas density:

unless E-field variation is so quick that the 
f(v;x) changes significantly over a few mean 
free paths.
Taking this condition for granted we can 
write the average gas gain as a line integral:

Ḡ :=
N

N0
= exp

[∫ B

A
ds α(E(s))

]

α = α0

(
E

ρ
,

B

ρ

)
· ρ

ρ0

which in general depends on the possible 
path along which the avalanche develops.
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The formula allows one to calculate the 
average gas gain once the 1st Townsend 
coefficient is given as a function of the E-
field. Strictly speaking, the scaling holds 
only when we change both the E- and B- 
fields simultaneously. As far as I know 
there is no analytic treatment of general E 
and B configurations. When the E- and B- 
fields are parallel, however, the longitudinal 
motion will not be affected by the B-field 
and hence we can ignore the B-field effect 
on the Townsend coefficient (recall that 
the electron energy is characterized by 
eD/mu  which is unaffected). 
In the case of uniform E//B, we have

where      is the amplification gap and       is 
the high voltage across it. 
This should be a good approximation for a 
GEM or micromegas in particular.  Notice 
that the Townsend coefficient increases 

Ḡ(∆) = exp [α(V/∆) ∆]

∆ V

with the E-field. If the E-field is constant, 
the gas gain increases with the gap. The E-
field, however, decreases when the gap is 
increased. This suggests that the gas gain 
must attain a maximum for an appropriate 
gap value, around which the gas gain is 
stable against gap variation. This is the 
operation principle of the micromegas.

Paul Colas
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Gas Amplification
Statistics of Avalanche Fluctuation

The avalanche formation involves various 
mechanisms: impact ionization, Penning and 
Jesse  processes. We consider here the 
case where the impact ionization dominates.
We further assume a uniform E-field in the  
amplification region. A B-field, if there is 
any, should be parallel to the E-field. Now 
let the probability of getting N electrons 
at the point x from the beginning of the 
amplification region be P(N; x), then P(N; x) 
must satisfy the following self-consistency 
equation:

Alkhazov’s Theory (1970)

where pi(l) is the probability of 1st ionizing 
collision taking place at the distance l from 
the origin of the seed electron.

P (N ;x) =
∫ x

0
dl pi(l)

N−1∑

N ′=1

P (N ′;x− l)P (N −N ′;x− l)

Graphically we can represent this as in the 
following figure:

P

P

P pi

N '

N N '

N dl
N ' 1

N 1

0

x

x
x ll

We can define the avalanche fluctuation 
function as

p(z, x) := N(x) P (N(x)z;x)

Mn :=
∫ ∞

0
dz zn p(z, x)

=
∞∑

N=0

1
N̄(x)

(
N

N̄(x)

)n

N̄(x) P (N ;x)

and its n-th moment as
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Because of the central limit theorem, we 
expect that the avalanche fluctuation fn. 
and hence its moments also are determined 
by the early stage of the avalanche growth, 
which implies that p(z, x) should become x-
independent

an equation for Mn:

P (N ;x) =
∫ x

0
dl pi(l)

N−1∑

N ′=1

P (N ′;x− l)P (N −N ′;x− l)

The self-consistency equation also induces 
an equation for p(z):

M0 = M1 = 1
p(z, x)→ p(z)

at large x where

Keeping these in mind, we can derive from

Mn =
n∑

k=0

n!
k!(n− k)!

Mk Mn−k

∫ ∞

0
dl pi(l) e−n α l

by definition. M1=1 determines the 1st 
Townsend coefficient:

p(z) =
1

α z

∫ ∞

z
dz′

∫ z′

0
dz′′ p(z′′) p(z′ − z′′) pi

(
1
α

ln
z′

z

)

which can be used to get an approximate 
solution by iterative substitutions.

Mn =
n−1∑

k=1

n!
k!(n− k)!

Mk Mn−k J(n)
1− 2J(n)

J(n) :=
∫ ∞

0
dl pi(l) e−n α l

This leads us to a recurrence formula:

with 

determined by the probability for the 1st 
ionizing collision. 
On the other hand, we have

Once pi(l) is given, we can hence calculate 
Mn recursively. 

2J(1) = 2
∫ ∞

0
dl pi(l) e−α l = 1

N̄(x)→ eαx
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The self-consistency equation for p(z)

p(z) =
1

α z

∫ ∞

z
dz′

∫ z′

0
dz′′ p(z′′) p(z′ − z′′) pi

(
1
α

ln
z′

z

)

implies that the large l behavior of pi(l) 
controls the behavior of p(z) near z=0.
Assuming the exponential shape for the 
large l limit:

where C is a constant, we have

near z=0. Denoting

θ :=
a

α
− 1

we hence obtain

where C’ is a constant. In the case of Polya 
distribution, we have

θ = θpol :=
1
σ2
− 1

p(z) ! z
a
α−1

∫ ∞

0
dz′

∫ z′

0
dz′′ p(z′′)p(z′ − z′′)

C

α
z′a/α

p(z) ! C ′ zθ

Snyder’s Model

pi(l) = α e−α l

p(z) = e−z

If the ionization probability is constant as 
given by the 1st Townsend coefficient:

we have an exponential distribution

as the exact solution to the above equation.
This can be easily checked by substituting 
this in the self-consistency equation.
In this case we have 

Mn = n!
We thus have

M2 = 2

in particular. 
We will see the significance of this number 
later when we discuss the effective number 
of seed electrons (Neff). Experimentally 
we know that M2 is smaller than 2 for GEM 
and Mircomegas detectors.

pi(l)→ C e−a l as l→∞
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Mn =
∫ ∞

0
dl pi(l)

(
N̄(x− l)

N̄(x)

)n ∞∑

N=1

N−1∑

N ′=1

(
N ′ + (N −N ′)

N̄(x− l)

)n

P (N ′;x− l) P (N −N ′;x− l)

=
∫ ∞

0
dl pi(l)

(
N̄(x− l)

N̄(x)

)n ∞∑

N=1

N−1∑

N ′=1

n∑

k=0

n!
k!(n− k)!

(
N ′

N̄(x− l)

)k (
N −N ′

N̄(x− l)

)n−k

× P (N ′;x− l) P (N −N ′;x− l)

=
∫ ∞

0
dl pi(l) e−n α l

n∑

k=0

n!
k!(n− k)!

Mk Mn−k

p(z) =
∫ ∞

0
dl pi(l)

∫ zeα l

0
dz′′ eα l p(z′′) p(zeα l − z′′)

=
∫ ∞

0
dl pi(l) eα l

∫ ∞

z
dz′ δ(z′ − zeα l)

∫ z′

0
dz′′ p(z′′) p(z′ − z′′)

=
∫ ∞

z
dz′

∫ z′

0
dz′′ p(z′′) p(z′ − z′′)

∫ ∞

0
dl pi(l)δ(z′ − zeα l) eα l

=
1

α z

∫ ∞

z
dz′

∫ z′

0
dz′′ p(z′′) p(z′ − z′′) pi

(
1
α

ln
z′

z

)

Derivations of Recurrence Formulae
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Legler’s Model
Legler assumed that any ionizing collision 
may take place only after the seed electron 
flying over a minimum distance: 

so as to gain enough energy for ionization 
from the E-field. Legler further assumed 
the probability of ionizing collision being 
constant after the seed electron having 
reached the threshold. The probability of 
the 1st ionizing collision is then given by

x0 := U0/E

As mentioned before, 2J(1) = 1 gives

pi(l) = ai e
−ai(l−x0)θ(l − x0)

Notice that in the low E-field limit, where
αx0 → 0 as E/ρ→ 0

and hence
ai → α as E/ρ→ 0

converging to Snyder’s model.

From 

which leads us to 

Mn =
n−1∑

k=1

n!
k!(n− k)!

Mk Mn−k J(n)
1− 2J(n)

with

J(n) :=
∫ ∞

0
dl pi(l) e−n α l

M0 = M1 = 1
we have

M2 =
2 J(2)

1− 2 J(2)

σ2 = M2 − 1 =
(2− eα x0)2

2− (2− eα x0)2

κ := (2− eα x0)2
Denoting

we then obtain

ai =
α

2e−αx0 − 1
(0 ≤ α x0 ≤ ln 2)

σ2 = M2 − 1 =
κ

2− κ
(0 ≤ κ ≤ 1)

It is hence important to have a high E-field 
in the early stage of the avalanche growth 
in order to suppress gain fluctuation.

θ =
2(1−

√
κ)√

κ
=

√
κ

1 +
√

κ
θpol ≤ θpol
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The theta parameter controls the behavior 
near z=0. The inequality

states that the turn over near z=0 is less 
prominent than that expected from the 
variance assuming a Polya distribution

x0 := U0/E

σ2 = M2 − 1 =
(2− eα x0)2

2− (2− eα x0)2

θpol :=
1
σ2
− 1

or for the same theta, the variance is 
smaller than that expected for the Polya. 
Legrer’s model thus suggests a probability 
distribution for the gas gain fluctuation,    
p(z), being non-Polya. Nevertheless, we can 
calculate the variance by

with

If we set
U0 = UI : ionization pot.

and define
χ :=

α UI

Ewe have
σ2 = M2 − 1 =

(2− eχ)2

2− (2− eχ)2

The variance depends on the E-field. The 
data suggest

for Ar.
σ2 = M2 − 1 >∼ 0.2

Alkhazov 1970

θ =
2(1−

√
κ)√

κ
=

√
κ

1 +
√

κ
θpol ≤ θpol
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Extension to a nonuniform E field
Consider first the avalanche development in 
a uniform E field. Dividing the amplification 
region (0,x) into two parts (0,l), (l,x).

P

P

P

P N

x

x ll

P

1

2

N1

N2,1

N2,2

N2,N1

  

N N2, j
j 1

N1

N2,1 ,L,N2,N1N1

The self-consistency equation for this 
division reads

Here we have assumed that N1 2nd stage 
avalanches develop independently.
The average of N is then given by 

N̄12 =
∑

N12

P (N12;x) N12

=
∑

N1

∑

N2,1,··· ,N2,N1

N1 N2,jP (N1; l)




N1∏

j=1

P (N2,j ;x− l)





= N̄1 N̄2

which leads us to a functional equation
N̄(x) = N̄(l) N̄(x− l)

Noting that Nbar(0)=1, we have from this

dN̄

dx
(x) = lim

l→0

N̄(x)− N̄(x− l)
l

= lim
l→0

N̄(x− l)
N̄(l)− N̄(0)

l

= N̄(x)
dN̄

dx

∣∣∣∣
x=0

dN̄

dx
= α N̄ with α :=

dN̄

dx

∣∣∣∣
x=0

We find again the familiar equation

where      is the 1st Townsend coefficient.

P (N ;x) =
∑

N1

∑

N2,1,··· ,N2,N1

δ



N −
N1∑

j=1

N2,j





× P (N1; l)




N1∏

j=1

P (N2,j ;x− l)




α
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This eq. allows us to extend our uniform E-
field result to a nonuniform case

we have

which leads us to

This is none other than the average gas 
gain formula we have derived before.

Let us now consider the variance of the 
avalanche fluctuations:

Recalling the self-consistency equation

(N12)2 =
∑

N1

∑

N2,1,··· ,N2,N1

P (N1; l)




N1∏

j=1

P (N2,j ;x− l)








N1∑

j=1

N2,j




2

Ḡ(x) := N̄(x) = exp
[∫ x

0
dl α(l)

]

P (N ;x) =
∑

N1

∑

N2,1,··· ,N2,N1

δ



N −
N1∑

j=1

N2,j





× P (N1; l)




N1∏

j=1

P (N2,j ;x− l)





(N12)2 −
(
N̄12

)2 :=
∑

N12

P (N12;x) (N12)2 −
(
N̄12

)2

(N12)2 =
∑

N1

P (N1; l)
[
N1 (N2)2 +

(
(N1)2 −N1

)
(N̄2)2

]

= N̄1

(
(N2)2 − (N̄2)2

)
+ (N1)2(N̄2)2

Denoting
N2 − N̄2 := N̄2 f(N̄)

we arrive at
f(N̄1 N̄2) = f(N̄1) + (N̄1)−1f(N̄2)

f(N̄(x)) = f(N̄(l)) + (N̄(l))−1f(N̄(x− l))
or

If the gain of the 1st stage is large, the 
fluctuation in the 2nd stage is negligible, 
being consistent with naive expectation.
Differentiating both sides with respect to 
x and then taking l-to-x limit, we get

df

dN̄

dN̄

dx
=

1
N̄

(
df

dN̄

)

x=0

(
dN̄

dx

)

x=0

Recalling that
dN

dx
= αN̄ N̄(0) = 1and

we obtain 
df

dN̄
=

1
N̄2

(
df

dN̄

)

x=0

=:
C

N̄2
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General solution to this equation is Recalling

Ḡ(x) := N̄(x) = exp
[∫ x

0
dl α(l)

]
f(N̄) = C ′ − C

N̄

We need to impose the boundary condition

f(N(0)) = f(1) = 0
since 

P (N ; 0) = δ(N − 1)

Denoting 

we can rewrite the equation for f in the 
following form:

f0 := f(∞) = C

which requires
C ′ = C

df

dN̄
=

f0

N̄2

This equation allows us to extend our 
uniform field results to a nonuniform field.

we arrive at

From this and 

with

we can calculate the Polya parameter if the 
Townsend coefficient and f0 are known.
Notice that the avalanche fluctuation is in 
general non-Polya. Nevertheless we may use 
the Polya parameter as an index.

In the case of Legler’s model, we have

f0(x) =
(2− eχ(x))2

2− (2− eχ(x))2

χ(x) := α(x) x0(x) =
α(x) U0

E(x)

f ≡ σ2 =:
1

θpol + 1

f
(
Ḡ(x)

)
=

∫ x

0
dx′ α(x′)

f0(x′)
[Ḡ(x′)]2
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Summary
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What Theory Predicts
Some implications of Alkahzov’s theory

Theory predicts that at low E-field, the gas gain fluctuation becomes 
exponential (Snyder’s model). 

Comparing Snyder’s model to Legler’s, we find the importance of the non 
negligible minimum distance for ionization. Penning and Jesse effects do 
not have one. They may create a secondary electron at the upstream of 
the parent. When they set in, we hence expect degradation of resolution. 
The space charge effect may suppress the higher tail though.

For uniform E-fields, Legler’s model predicts a turn over towards low gain, 
and a smaller gas gain fluctuation (shorter tail) than that expected from 
the theta parameter as determined from the turn over near the zero gain.

Theta depends on the E field configuration. For smaller gas gain 
fluctuation, higher E-field in the beginning is essential! This is probably 
the reason why the micromegas energy resolution is so good. We need a 
large chi value.
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To increase Neff, one needs

high 1/(<1/N>)

low gas gain fluctuation (large theta)

(high transmission gating GEM)

If we are to lower the gain in order to avoid a gating GEM, we have to 
make sure that Neff does not decrease too much. If it does, there will 
be no strong reason to avoid the gating GEM. We need to consider the 
optimization of Neff considering both the transmission coefficient for 
the gating GEM and a possible gas gain dependence of Neff. High enough 
gas gain by increasing the E-field may benefit.

Of course, the theory has to be tested by experiments. Fortunately 
French groups are measuring single photon spectra and Polya parameters. 
I am looking forward to seeing their results!

Implication on Neff
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Appendix
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Central Limit Theorem
Sketch of Its Proof

The characteristic function of a probability 
distribution function P(x) is defined by

Characteristic Function

which is essentially the Fourier transform 
of the p.d.f. and hence uniquely specifies it.
The characteristic function comes in handy 
for calculations of moments: 

By definition, we have

M0 = 1
M1 = x̄
M2 = σ2 + x̄2

Once a characteristic function is given, we 
can calculate these moments as

Mn = (−i)n dn

dsn
φ(s)

∣∣∣∣
s=0

For instance, the characteristic function of 
a Gaussian distribution is 

It is easy to make sure that the first three 
moments obtained from this characteristic 
function indeed coincide the above.

φ(s) :=
∫

dx eisx P (x)

Mn :=
∫

dx xn P (x)

φG(s) =
∫ +∞

−∞
dx eisx 1√

2πσ
e−

(x−x̄)2

2σ2

= e−
1
2 σ2s2+ix̄s

Examples

M1 = x̄
M2 = σ2 + x̄2

22



The 1st and the 2nd moments obtained 
from the characteristic function are

If theta=0, the Polya distribution becomes 
an exponential one with lambda=1 as is 
clearly seen either from the definition or 
from its characteristic function.

x̄ = 1
σ2 =

1
1 + θ

φP (s) =
(

θ + 1
θ + 1− is

)θ+1

→ eis as θ →∞

The asymptotic form coincides with the 
characteristic function for a Gaussian with 
a mean value of unity and with a zero width.

φP (s) =
∫ ∞

0
dx eisx (θ + 1)θ+1

Γ(θ + 1)
xθe−(θ+1)x

=
(

θ + 1
θ + 1− is

)θ+1

For a Polya distribution

φE(s) =
∫ +∞

0
dx eisx 1

λ
e−x/λ

= (1− isλ)−1

For an exponential distribution, we have

The Polya distribution becomes a delta-
function in the limit of theta going to 
infinity as is easily seen from its 
characteristic function:

and hence
M1 = x̄ = λ
M2 = σ2 + x̄2 = 2λ2

M1 = x̄ = 1

M2 = σ2 + x̄2 =
2 + θ

1 + θ

from which we have

we have

PP (x) =
(θ + 1)θ+1

Γ(θ + 1)
xθe−(θ+1)x
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A p.d.f. for a random variable x induces a 
p.d.f. for a variable (ax). The characteristic 
function for (ax) is then given by

Composition Rules
We consider N variables x1, ..., xN, obeying 
the same p.d.f.: P(x), and consider the 
distribution of

A p.d.f. for a variable x1 and another p.d.f. 
for a variable x2 induce a p.d.f. for their 
sum (x1+x2). The characteristic function 
for this reads 

φax(s) =
∫

d(ax) eis(ax) 1
a
P (x) = φx(as)

φ1+2(s) =
∫

dx eisx

∫
dx1

∫
dx2 P1(x1) P2(x2)

× δ (x− (x1 + x2))

= φ1(s) · φ2(s)

For N variables with the same p.d.f., we get

φN (s) = [φ(s)]N

Proof of Central Limit Theorem

The characteristic function for this is 

Recall now that we can expand phi in terms 
of moments as follows

The characteristic function for (x+a) is 

φx+a =
∫

d(x + a) eis(x+a) P (x) = eias φx(s)

In the large N limit, we hence have

z :=
1√
Nσ

N∑

i=1

(xi − x̄)

φz(s) = [φx−x̄(s/
√

Nσ)]N

φx−x̄(s/
√

Nσ) =
∞∑

k=0

(is/
√

Nσ)k

k!
Mk

= 1− s2

2N
+ O

(
1

N3/2

)

φz(s) = [φx−x̄(s/
√

Nσ)]N

→ lim
N→∞

[
1− s2

2N

]N

= e−
1
2 s2

implying that the p.d.f. for z is a Gaussian 
centered at zero with a variance of 1.
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