High-Pressure Gas TPC Development for Double Beta Decay Studies in ¹³⁶Xenon

<u>C. K. Hargrove</u>¹, O. Abouzeid¹, M. Bowcock¹, P. Colas²,
 M. Dixit^{1,3}, K. McFarlane¹, I. Giomataris², K. Graham¹,
 P. Gravelle¹, C. Greene¹, D. Sinclair^{1,3}
 V. Strickland ^{1,3}, & R. Woods¹

¹Carleton University Ottawa, Canada, ²CEA-Dapnia Saclay, France ³TRIUMF Vancouver, Canada

N62-6 IEEE NSS Dresden 24 October 2008

Neutrinoless Double Beta Decay

 $\Delta L=2$ lepton number violation? Neutrino mass scale, neutrino mass hierarchy?

EXO Program: First measurement of $^{136}Xe 2\nu\beta\beta$ Search for $0\nu\beta\beta$ with 200 kg liquid xenon TPC EXO200 installed at WIPP (New Mexico)

Double beta decay in ¹³⁶Xe - Liquid vs Gas

	Liquid Phase TPC	Gas Phase TPC	
Energy resolution	challenging	Better in principle	
Position reconstruction	single site	Identify two electron tracks with Bragg peaks	
Barium tag	ex-situ experimental tour de force	in-situ may be possible less difficult	
Scale up	straightforward	gets large pressure vessel	
Physics	rates, energy spectrum	plus angular correlation	

- both options being pursued at present
- -Gas TPC R&D items: Barium tag, scintillation light detection, simulation

Energy resolution for mono-energetic electron tracks in a high pressure xenon gas TPC

High pressure gas TPC drift cell

- Adjustable maximum 16 cm drift, moveable source holder
- operated at 2 bar pressure with argon and xenon
- single readout channel
- ⁵⁵Fe, ¹⁰⁹Cd, and ²⁴¹Am sources (~5.5 MeV)

Measurements in ion chamber mode & with Micromegas

readout

- field cage
- source holder

connected to vaccum/gas system with purification

Ion Chamber Results ²⁴¹Am 5.5 MeV

Gases studied: Argon, Xenon, P10, Xe + CH4 (1,2,5 %), Xe + TEA (1 and 2 %)

~1% E resolution (σ) for all cases but electron loss due to attachment with TEA a gas purity question?

Micromegas (Microbulk)

Micromesh thickness 5 µm (copper)
Micromesh hole diameter 30 µm
Micro-holes (square grid) 100 µm pitch,
Pillar height (anode-cathode gap) 50 µm
Optical Transparency: 7%
Capacitance ~3 nF

Resolution for 5.5 MeV α_s in P10

Relatively high Micromegas field ratios required!

¹⁰⁹Cd electron source ~ 150 µg/cm² Mylar window

Electron capture to $^{109}Ag m (40 s)$ Complicated spectrum Strong conversion electron lines ≻62.5 keV from K conversion (40 per 100) disintegrations) >85 keV L conversion (45 per 100 disint.) ≻87 keV M conversion (10 per 100 disint.) 18-25 keV Auger e⁻ (~ 20/100 disint.) 22-25 keV Ag x rays 88 keV gamma (4 per 100 disint.)

Observed ¹⁰⁹Cd spectrum distorted by Mylar window

¹⁰⁹Cd spectrum in Ar + 5% iC₄H₁₀@2bar

¹⁰⁹Cd energy resolution with Micromegas in Ar + 5% iC₄H₁₀@2bar

22-25 keV Ag x rays

62-85 keV electron lines

¹⁰⁹Cd electrons & x rays in Xenon + 5% iC₄H₁₀@2bar

¹⁰⁹Cd measurement with Micromegas in Xe + 5% iC₄H₁₀@2bar

22-25 keV Ag x rays

62-85 keV electron lines

Measurements limited by high backgrounds and low gair

Summary

- Good energy resolution for 5.54 MeV $^{\rm 241}Am$ αs in a Xenon TPC ion chamber
- A first measurement of extended electron track energies in a Xenon gas TPC at 2 bar with Micromegas readout
- Measured ¹⁰⁹Cd spectrum distorted by ~ 150 μ g/cm² Mylar window. About 5% (σ) energy resolution for 62 keV electrons
- Simple 1/√E scaling would give less than 1% resolution at 2.5 MeV for the ¹³⁶Xe zero neutrino double beta decay electrons
- Microbulks appear to be less robust than conventional Micromegas
- Micromegas as large as 1 meter x 2 meter with segmented mesh and pad readout may be needed for ¹³⁶Xe high pressure gas TPC

^{109}Cd gammas and electron spectrum in xenon after passing through ~ 150 $\mu g/cm^2$ Mylar window

Cd109 gammas and electrons in xenon at 2 bar after energy loss in ~150 micro-gm Mylar window							
Mylar thickness ~ 150 micro-gm/cm2 Mylar dens			1.4				
Kenon density (gm/ml) 0.01180 at 2 bar							
Particle emitted	Gamma or electron	No. per 100	Gamma or electron	Relative	Electron range		
in 109 Cd decay	energy	disint.	energy in gas	probability %	/gamma att. lenth		
	keV		keV		xenon at 2 bar		
electron eal	1.8 - 3.8	167.0	0	72.3	Stops in Mylar		
photon Ll, Lgamma	2.63-3.75	10.3	2.63-3.75	4.5	0.23 cm@4 keV		
electron eak KLL	17.8 - 18.7	14.0	13.9 - 14.8	6.1	0.046cm@15keV		
electron eak KLX	20.9 - 22.2	6.0	17.9 - 19.2	2.6	0.075mm@19keV		
electron eak KXY	24.1 - 25.5	0.6	21.4 - 23.1	0.3	1.1mm@23keV		
photon XKalpha2	21.99	29.0	21.99	12.6	4 cm@22keV		
photon XKalpha1	22.16	54.7	22.16	23.7	4 cm@22keV		
photons XK'beta1	24.91-25.15	15.1	24.91-25.15	6.6	5.3 cm@25keV		
photons XK'beta2	25.46 - 25.51	2.6	25.46 - 25.51	1.1	5.5cm@25.5keV		
electron ex1,0 K	62.50	40.8	61.5	17.7	0.73 cm		
electron ec1,0 L	84.2 - 84.7	44.8	83.3 - 83.8	19.4	1.2 cm		
electron ec1,0 M	87.3 - 88.0	9.3	86.4 - 87.1	4.0	1.3 cm		
gamma1,0	88.03	3.6	88.03	1.6	42.4 cm		
All		230.9		100.0			
Atten length at 4 keV in Mylar = 18.5 mg/cm2							
Gamma energy	mu/rho in xenon	Atten. length		Electron	dE/dX in		
(keV)	(cm2/gm)	(cm)		energy	Mylar		
3.0	770.9	0.11		keV	MeV.cm2/gm		
4.0	372.8	0.23		17.8 - 18.7	13.3		
5.0	601.5	0.14		20.9 - 22.2	12.2		
22.0	21.2	4.00		24.1 - 25.5	10.3		
25.0	16.1	5.26		62.50	5.1		
25.5	15.3	5.54		84.2 - 84.7	4.26		
88.0	2.0	42.37		87.3 - 88.0	4.04		