
Kiesuke Fujii, KEK
April 16, 2009

KalTest
-- Extended Kalman Filter --

1

Set of
Hits

Set of
Tracks

Set of Track
Parm. Vectors

Track = subset of hits

Track Fitting

Tracking = Track Fitting x Track Finding

Track Finding
Today’s menu

Kalman Filter
Formulation

Its C++
Implementation

Application to
ILC Trackers

2

Statement
of

the Problem

3

Site ()Evolution
fk−1

k

System

state
ak,t

Process Noise
wk−1 Measurement ()k

mkMeasurement ()k − 1
mk−1

ak

Estimate of the state

Site ()

state
ak−1,t

k−1

4

Example 1 : Ballistic Missile (Original Application)

ak =
(

x
p

)

k

wk−1

Random turbulence between () and ()kk − 1

Position and momentum at ()k

mk

k
position and velocity measured
with a radar at ()

εk

Measurement error of radar

5

Track = as a Kalman System consisting of Sites (Hits)

ak =

dρ

φ0

κ
dz

tanλ

k

Helix parameter vector at ()k

wk−1

kMultiple scattering between () and ()k − 1

mk
εk

Measured hit point at ()k random detector noise

state

site

6

ak,t = fk−1(ak−1,t) + wk−1

System Equation (Equation of Motion)

true state vector at ()k

process noise from
() to ()k − 1 k

{
〈wk〉 = 0
〈
wkwT

k

〉
≡ Qk

Assume that process noise is
random and unbiased

true state vector at ()k − 1

7

mk = hk(ak,t) + εk

Measurement Equation

measurement vector at Site ()k

measurement noise

{
〈εk〉 = 0
〈
εkεT

k

〉
≡ V k ≡ G−1

k

Assume that measurement
 noise is random and unbiased

true measurement vector
at Site ()k

8

What We Need = Recurrence Formulae

(i) Prediction

Machineary to do:

{mk′ ; k′ ≤ k} "→ ak′′>k : future

(ii) Filtering

(iii) Smoothing

{mk′ ; k′ ≤ k} "→ ak′′=k : present

{mk′ ; k′ ≤ k} "→ ak′′<k : past

9

Notation

ai
k : extimate of ak,t using measurements up to (i)

(ak
k ≡ ak for simplicity of notation)

Ci
k : covariance matrix for ai

k

Ci
k ≡

〈
(ai

k − ak,t)(ai
k − ak,t)T

〉

ri
k : residual

ri
k ≡ mk − hk(ai

k)

Ri
k : covariance matrix for ri

k

Ri
k ≡

〈
ri

kriT
k

〉

10

Prediction

11

Extrapolation Error

{mk′ ; k′ ≤ k} "→ ak′′>k : future

ak−1
k = fk−1(ak−1)

Ck−1
k = F k−1Ck−1F

T
k−1 + Qk−1

F k−1 ≡
(

∂fk−1

∂ak−1

)

Process Noise

State Vector

Covariance Matrix

12

Extrapolation Error

rk−1
k ≡ mk − hk(ak−1

k)

Rk−1
k = V k + HkCk−1

k HT
k

Hk ≡
(

∂hk

∂ak−1
k

)
Measurement

Noise

Residual

Covariance Matrix

13

Filtering

14

New Pull

{mk′ ; k′ ≤ k} "→ ak′′=k : present

ak = ak−1
k + Kk

(
mk − hk(ak−1

k)
)

already calculated in the prediction step

Kalman Gain Matrix
Kk ≡ Ck−1

k HT
k

(
V k + HkCk−1

k HT
k

)−1

= Ck−1
k HT

k

(
Rk−1

k

)−1

State Vector

15

Ck = (1 − KkHk)Ck−1
k

Covariance Matrix

Kk = CkHT
k Gk

Equivalent but different Way: Weighted Mean Method

Ck =
[(

Ck−1
k

)−1
+ HT

k GkHk

]−1

Improvement from
New Measurement at ()k

Which to use depends on the
dimensions of state vector
and measurement vector

16

Measurement
Noise

rk ≡ mk − hk(ak)

= (1 − HkKk) rk−1
k

Gain due to Information from
previous measurements

Rk = (1 − HkKk)V

= V k − HkCkHT
k

χ2
+ = rT

k R−1
k rk

= rT
k Gkrk + (ak − ak−1

k)T
(
Ck−1

k

)−1
(ak − ak−1

k)

Residual

Covariance Matrix

Chi Square Increment

17

Smoothing

18

New Pull

already calculated in
the prediction step

State Vector

{mk′ ; k′ ≤ k} "→ ak′′<k : past

an
k = ak + Ak(an

k+1 − ak
k+1)

already calculated in the filtering step

already calculated in the prediction step

Smoothing Matrix

Ak ≡ CkF T
k

(
Ck

k+1

)−1

19

Fi
lt

er
Sm

oo
th

in
g

It is instructive to compare filtering and smoothing formulae

New Pull

an
k = ak + Ak(an

k+1 − ak
k+1)

ak = ak−1
k + Kk

(
mk − hk(ak−1

k)
)

Kk ≡ Ck−1
k HT

k

(
Rk−1

k

)−1

Ak ≡ CkF T
k

(
Ck

k+1

)−1

20

negative definite

Covariance Matrix

already calculated in the filtering step

already calculated in the previous step

already calculated in
the prediction step

Cn
k = Ck + Ak

(
Cn

k+1 − Ck
k+1

)
AT

k

Improvement from
Measurements at ()k + 1 ∼ n

21

rn
k ≡ mk − hk(an

k)

= rk − Hk(an
k − ak)

Measurement
Noise

Gain due to Information from
other measurements

Residual

Covariance Matrix

Rn
k = Rk − HkAk

(
Cn

k+1 − Ck
k+1

)
AT

k HT
k

= V k − HkCn
kHT

k

22

Inverse Kalman Filter

23

Pull we want to eliminateState Vector

Machineary to eliminate measurement ()k

an∗
k = an

k + Kn∗
k (mk − hk(an

k))

already calculated in the smoothing step

already calculated in the prediction step

Kalman Inverse Gain Matrix

Kn∗
k ≡ Cn

kHT
k

(
−V k + HkCn

kHT
k

)−1

24

Covariance Matrix for state vector

already calculated in the smoothing step

already calculated in
the prediction step

Covariance Matrix for residual

Rn∗
k = V k + HkCn∗

k HT
k

Cn∗
k = (1 − Kn∗

k Hk)Cn
k

=
[
(Cn

k)−1 −HT
k GkHk

]−1

25

Typical Usage of
Kalman Filter in Tracking

26

akak−1a1

ak−1
k

a2

filtering a1
2

prediction

ak−2
k−1

· · ·
an

· · ·

(1) · · · ← (k) ← (k + 1) ← · · · ← (n − 1) ← (n)
· · ·an

k+1an
k· · ·an

1 an

≡

an
n

an
n−1

smoothing

(1) → (2) → · · · → (k − 1) → (k) → · · · (n)
innermostoutermost

an
prediction

an
n+1 = aIP an

1an
0 = acal

prediction

Typical Procedure for Tracking

Extrapolation

27

Alignment, Resolution Study, etc.

hk(an∗
k) Expected Hit Position

an∗
k

Inverse Kalman Filter
Reference Track Param.

rn∗
k = mk − hk(an∗

k) Residual to Look At

(1) · · · · · · · · · (k − 1) (k) (k + 1) · · · · · · · · · (n)
Need to eliminate point () k

28

C++ Implementation
Kalman Filter Library

KF, Y.Nakashima, and A.Yamaguchi

29

Kalman Filter Library Features

KalLib: general base classes that implement algorithm
TVKalSystem, TVKalSite, TVKalState

KalTrackLib: that implements pure virtuals of KalLib for
track fitting purpose
GeomLib: geometry classes that provide

track models (helix, straight line, ...)
surfaces (cylinder, hyperboloid, flat plane, ...)

Minimum number of user-implemented classes
MeasLayer : measurement layer
KalDetector : an array containing MeasLayers

You can put different kinds of MeasLayers
Hit : coordinate vector as defined by the MeasLayer

Track model can change site to site which allows B-field
variation along a particle trajectory

30

Kalman Filter Class Organization

A TVKalSite carries predicted, filtered, and smoothed TVKalState’s
Application-specific functions are pure virtual and to be implemented in a derived class

31

32

33

Sample User Program

34

Application to
ILC Track Fitting

35

Example of Detector Implementation

y

z

x
IP

dv

φv

R

(xv,yv,zv)

Pad Row

Measurement Layer

Helix

Define a KalDetector (TPCKalDetector) inheriting TVKalDetector

Hit(
R · φv

dv

)
=

(
R · tan−1

(
yv
xv

)

L/2 ∓ zv

)

x = x0 + dρ cos φ0 + α
κ (cos φ0 − cos(φo + φ))

y = y0 + dρ sinφ0 + α
κ (sinφ0 − sin(φo + φ))

z = z0 + dz − α
κ tanλ · φ

S(x, y, z) = x2 + y2 − R2

= 0

TPC Implementation

36

HitToXv

XvToMv
(

R · φv

dv

)
=

(
R · tan−1

(
yv
xv

)

L/2 ∓ zv

)

xv

yv

zv

 =

R · cos φv

R · sinφv

±(L/2 − dv)

Define TPCMeasLayer by inheriting TVMeasLayer and implement
its pure virtual methods:

37

CalcDhDa

∂x(φ(a),a)
∂a = ∂x

∂φ · ∂φ
∂a + ∂x

∂a
∂φ
∂a = − 1

(∂S
∂x · ∂x

∂φ)
∂S
∂x · ∂x

∂a

(
∂(R·φv)

∂a
∂dv
∂a

)
=

(
−yv

R

(
∂xv
∂a

)
+ xv

R

(
∂yv

∂a
)

∓ ∂zv
∂a

)
Meas.Vector Derivative w.r.t. Track Parameter Vector

Notice that some TPCMeasLayer’s may be implemented as dummy
representing just boundaries of different materials

38

Define other trackers such as IT and VTX in a similar way and
install them into TKalDetCradle as

Add TPCMeasLayer’s to TPCKalDetector with Add(..) method to
complete TPC implementation

Integration of different trackers into a single tracking system

Upon installation of each detector, its shell evaporates and only
its MeasLayer’s remain flatly expanded in the cradle
The last line sorts out the flatly expanded MeasLayer’s from
inside to outside

TKalDetCradle toygld;
VTXKalDetector vtxdet; toygld.Indtall(vtxdet);
ITKalDetector itdet; toygld.Install(itdet);
TPCKalDetector tpcdet; toygld.Install(tpcdet);
toygld.Sort();

39

 // ---------------------------
 // Add sited to the kaltrack
 // ---------------------------

 EXHYBTrack kaltrack; // a track is a kal system
 kaltrack.SetOwner(); // kaltrack owns sites
 kaltrack.Add(&sited); // add the dummy site to this track

 // ---------------------------
 // Prepare hit iterrator
 // ---------------------------

 TIter nextsite(&kalhits, gkDir); // come in to IP, if gkDir = kIterBackward

 // ---------------------------
 // Start Kalman Filter
 // ---------------------------

 TVTrackHit *hitp = 0;
 while ((hitp = dynamic_cast<TVTrackHit *>(nextsite()))) {
 TKalTrackSite &site = *new TKalTrackSite(*hitp); // new site
 if (!kaltrack.AddAndFilter(site)) { // filter it
 cerr << " site discarded!" << endl;
 delete &site; // delete it if failed
 }
 } // end of Kalman filter

 // ---------------------------
 // Smooth the track
 // ---------------------------

 kaltrack.SmoothBackTo(0);

40

http://www-jlc.kek.jp/subg/offl/kaltest/

More information available from the following URL:

where you can find a reference manual for the KalTest package
and some other useful documents.

The reference manual contains full derivations of relevant
formulae for extended Kalman filter technique.

41

http://www-jlc.kek.jp/subg/offl/kaltest/
http://www-jlc.kek.jp/subg/offl/kaltest/

