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Tracking = Track Fitting x Track Finding

Track Finding
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Example 1 : Ballistic Missile (Original Application)

ak =
(

x
p

)

k

wk−1

Random turbulence between (          ) and (   )kk − 1

Position and momentum at (   )k

mk

k
position and velocity measured
with a radar at (   )

εk

Measurement error of radar
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Track = as a Kalman System consisting of Sites (Hits) 

ak =





dρ

φ0

κ
dz

tanλ





k

Helix parameter vector at (   )k

wk−1

kMultiple scattering between (          ) and (   )k − 1

mk
εk

Measured hit point at (   )k random detector noise

state

site

6



ak,t = fk−1(ak−1,t) + wk−1

System Equation (Equation of Motion)

true state vector at (   )k

process noise from
(          ) to (   )k − 1 k

{
〈wk〉 = 0
〈
wkwT

k

〉
≡ Qk

Assume that process noise is 
random and unbiased

true state vector at (          )k − 1
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mk = hk(ak,t) + εk

Measurement Equation

measurement vector at Site (   )k

measurement noise

{
〈εk〉 = 0
〈
εkεT

k

〉
≡ V k ≡ G−1

k

Assume that measurement
 noise is random and unbiased

true measurement vector 
at Site (   )k
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What We Need = Recurrence Formulae

(i) Prediction

Machineary to do:

{mk′ ; k′ ≤ k} "→ ak′′>k : future

(ii) Filtering

(iii) Smoothing

{mk′ ; k′ ≤ k} "→ ak′′=k : present

{mk′ ; k′ ≤ k} "→ ak′′<k : past
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Notation






ai
k : extimate of ak,t using measurements up to (i)

(ak
k ≡ ak for simplicity of notation)

Ci
k : covariance matrix for ai

k

Ci
k ≡

〈
(ai

k − ak,t)(ai
k − ak,t)T

〉

ri
k : residual

ri
k ≡ mk − hk(ai

k)

Ri
k : covariance matrix for ri

k

Ri
k ≡

〈
ri

kriT
k

〉
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Prediction

11



Extrapolation Error

{mk′ ; k′ ≤ k} "→ ak′′>k : future

ak−1
k = fk−1(ak−1)

Ck−1
k = F k−1Ck−1F

T
k−1 + Qk−1

F k−1 ≡
(

∂fk−1

∂ak−1

)

Process Noise

State Vector

Covariance Matrix
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Extrapolation Error

rk−1
k ≡ mk − hk(ak−1

k )

Rk−1
k = V k + HkCk−1

k HT
k

Hk ≡
(

∂hk

∂ak−1
k

)
Measurement

Noise

Residual

Covariance Matrix
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Filtering
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New Pull

{mk′ ; k′ ≤ k} "→ ak′′=k : present

ak = ak−1
k + Kk

(
mk − hk(ak−1

k )
)

already calculated in the prediction step

Kalman Gain Matrix
Kk ≡ Ck−1

k HT
k

(
V k + HkCk−1

k HT
k

)−1

= Ck−1
k HT

k

(
Rk−1

k

)−1

State Vector
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Ck = (1 − KkHk)Ck−1
k

Covariance Matrix

Kk = CkHT
k Gk

Equivalent but different Way: Weighted Mean Method

Ck =
[(

Ck−1
k

)−1
+ HT

k GkHk

]−1

Improvement from 
New Measurement at (   )k

Which to use depends on the 
dimensions of state vector 
and measurement vector
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Measurement
Noise

rk ≡ mk − hk(ak)

= (1 − HkKk) rk−1
k

Gain due to Information from 
previous measurements

Rk = (1 − HkKk)V

= V k − HkCkHT
k

χ2
+ = rT

k R−1
k rk

= rT
k Gkrk + (ak − ak−1

k )T
(
Ck−1

k

)−1
(ak − ak−1

k )

Residual

Covariance Matrix

Chi Square Increment
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Smoothing
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New Pull

already calculated in 
the prediction step

State Vector

{mk′ ; k′ ≤ k} "→ ak′′<k : past

an
k = ak + Ak(an

k+1 − ak
k+1)

already calculated in the filtering step

already calculated in the prediction step

Smoothing Matrix

Ak ≡ CkF T
k

(
Ck

k+1

)−1
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Fi
lt

er
Sm

oo
th

in
g

It is instructive to compare filtering and smoothing formulae

New Pull

an
k = ak + Ak(an

k+1 − ak
k+1)

ak = ak−1
k + Kk

(
mk − hk(ak−1

k )
)

Kk ≡ Ck−1
k HT

k

(
Rk−1

k

)−1

Ak ≡ CkF T
k

(
Ck

k+1

)−1
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negative definite

Covariance Matrix

already calculated in the filtering step

already calculated in the previous step

already calculated in 
the prediction step

Cn
k = Ck + Ak

(
Cn

k+1 − Ck
k+1

)
AT

k

Improvement from 
Measurements at (                 )k + 1 ∼ n
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rn
k ≡ mk − hk(an

k )

= rk − Hk(an
k − ak)

Measurement
Noise

Gain due to Information from 
other measurements

Residual

Covariance Matrix

Rn
k = Rk − HkAk

(
Cn

k+1 − Ck
k+1

)
AT

k HT
k

= V k − HkCn
kHT

k
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Inverse Kalman Filter
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Pull we want to eliminateState Vector

Machineary to eliminate measurement (   )k

an∗
k = an

k + Kn∗
k (mk − hk(an

k ))

already calculated in the smoothing step

already calculated in the prediction step

Kalman Inverse Gain Matrix

Kn∗
k ≡ Cn

kHT
k

(
−V k + HkCn

kHT
k

)−1
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Covariance Matrix for state vector

already calculated in the smoothing step

already calculated in 
the prediction step

Covariance Matrix for residual

Rn∗
k = V k + HkCn∗

k HT
k

Cn∗
k = (1 − Kn∗

k Hk)Cn
k

=
[
(Cn

k )−1 −HT
k GkHk

]−1
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Typical Usage of 
Kalman Filter in Tracking
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akak−1a1

ak−1
k

a2

filtering a1
2

prediction

ak−2
k−1

· · ·
an

· · ·

(1) · · · ← (k) ← (k + 1) ← · · · ← (n − 1) ← (n)
· · ·an

k+1an
k· · ·an

1 an

≡

an
n

an
n−1

smoothing

(1) → (2) → · · · → (k − 1) → (k) → · · · (n)
innermostoutermost

an
prediction

an
n+1 = aIP an

1an
0 = acal

prediction

Typical Procedure for Tracking

Extrapolation
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Alignment, Resolution Study, etc.

hk(an∗
k ) Expected Hit Position

an∗
k

Inverse Kalman Filter
Reference Track Param.

rn∗
k = mk − hk(an∗

k ) Residual to Look At

(1) · · · · · · · · · (k − 1) (k) (k + 1) · · · · · · · · · (n)
Need to eliminate point (   ) k
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C++ Implementation
Kalman Filter Library

KF, Y.Nakashima, and A.Yamaguchi
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Kalman Filter Library Features

KalLib: general base classes that implement algorithm
TVKalSystem, TVKalSite, TVKalState

KalTrackLib: that implements pure virtuals of KalLib for 
track fitting purpose
GeomLib: geometry classes that provide 

track models (helix, straight line, ...)
surfaces (cylinder, hyperboloid, flat plane, ...)

Minimum number of user-implemented classes
MeasLayer : measurement layer
KalDetector : an array containing MeasLayers

You can put different kinds of MeasLayers
Hit : coordinate vector as defined by the MeasLayer

Track model can change site to site which allows B-field 
variation along a particle trajectory
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Kalman Filter Class Organization

A TVKalSite carries predicted, filtered, and smoothed TVKalState’s
Application-specific functions are pure virtual and to be implemented in a derived class 
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Sample User Program
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Application to 
ILC Track Fitting
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Example of Detector Implementation

y

z

x
IP

dv

φv

R

(xv,yv,zv)

Pad Row

Measurement Layer 

Helix

Define a KalDetector (TPCKalDetector) inheriting TVKalDetector 

Hit(
R · φv

dv

)
=

(
R · tan−1

(
yv
xv

)

L/2 ∓ zv

)






x = x0 + dρ cos φ0 + α
κ (cos φ0 − cos(φo + φ))

y = y0 + dρ sinφ0 + α
κ (sinφ0 − sin(φo + φ))

z = z0 + dz − α
κ tanλ · φ

S(x, y, z) = x2 + y2 − R2

= 0

TPC Implementation
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HitToXv

XvToMv
(

R · φv

dv

)
=

(
R · tan−1

(
yv
xv

)

L/2 ∓ zv

)




xv

yv

zv



 =




R · cos φv

R · sinφv

±(L/2 − dv)





Define TPCMeasLayer by inheriting TVMeasLayer and implement 
its pure virtual methods: 
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CalcDhDa

∂x(φ(a),a)
∂a = ∂x

∂φ · ∂φ
∂a + ∂x

∂a
∂φ
∂a = − 1

( ∂S
∂x · ∂x

∂φ )
∂S
∂x · ∂x

∂a

(
∂(R·φv)

∂a
∂dv
∂a

)
=

(
−yv

R

(
∂xv
∂a

)
+ xv

R

(
∂yv

∂a
)

∓ ∂zv
∂a

)
Meas.Vector Derivative w.r.t. Track Parameter Vector

Notice that some TPCMeasLayer’s may be implemented as dummy 
representing just boundaries of different materials
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Define other trackers such as IT and VTX in a similar way and
install them into TKalDetCradle as

Add TPCMeasLayer’s to TPCKalDetector with Add(..) method to 
complete TPC implementation

Integration of different trackers into a single tracking system

Upon installation of each detector, its shell evaporates and only 
its MeasLayer’s remain flatly expanded in the cradle
The last line sorts out the flatly expanded MeasLayer’s from 
inside to outside

TKalDetCradle toygld;
VTXKalDetector vtxdet; toygld.Indtall(vtxdet);
ITKalDetector itdet; toygld.Install(itdet);
TPCKalDetector tpcdet; toygld.Install(tpcdet);
toygld.Sort();
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  // ---------------------------
  //  Add sited to the kaltrack
  // ---------------------------

  EXHYBTrack kaltrack;   // a track is a kal system
  kaltrack.SetOwner();   // kaltrack owns sites
  kaltrack.Add(&sited);  // add the dummy site to this track

  // ---------------------------
  //  Prepare hit iterrator
  // ---------------------------

  TIter nextsite(&kalhits, gkDir); // come in to IP, if gkDir = kIterBackward

  // ---------------------------
  //  Start Kalman Filter
  // ---------------------------

  TVTrackHit *hitp = 0;
  while ((hitp = dynamic_cast<TVTrackHit *>(nextsite()))) {
    TKalTrackSite  &site = *new TKalTrackSite(*hitp); // new site
    if (!kaltrack.AddAndFilter(site)) {               // filter it
      cerr << " site discarded!" << endl;
      delete &site;                        // delete it if failed
    }
  } // end of Kalman filter

  // ---------------------------
  //  Smooth the track
  // ---------------------------

  kaltrack.SmoothBackTo(0);
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http://www-jlc.kek.jp/subg/offl/kaltest/

More information available from the following URL:

where you can find a reference manual for the KalTest package
and some other useful documents.

The reference manual contains full derivations of relevant 
formulae for extended Kalman filter technique. 
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