Experience with resistive coatings on GRPCs for the ILD SDHCAL technological prototype

Nick Lumb, Imad Laktineh CERN, 13 April 2011

Considerations for a technological prototype

- Build 1 m3 module with ILC requirements for testing in beams at CERN and / or Fermilab :
- Challenges:
 - Large area (1m x 1m) GRPCs
 - Large number (48+) of detectors
 - Detector + electronics thickness < 6mm
 - Minimize dead zones
 - Homogeneous gain
 - Efficiency >90% + minimize multiplicity
 - Full integrated electronics with power pulsing
 - Realistic support structure for absorbers + RPCs

Chamber performance: key design parameters

- Homogeneity of gain / efficiency
 - Constant gas gap over large areas
 - Efficient gas distribution within chamber
 - No air gaps between readout pads and anode glass
- Optimization of multiplicity
 - Absolute value of coating resistivity
 - Higher values give lower multiplicity
 - $\hfill\square$ Compromise: 0.5-10 MQ/ $_{\Box}$
 - Uniformity of resistivity over surface

Cross-section of 1m² glass RPCs

Total thickness: 6.025mm

Resistive coating - Statguard

- Contains oxides of Fe, Ti
- Floor coating for ESD applications
- Easily obtainable, e.g. Farnell
- □ Supplied as liquid in 1 gallon pots → wide choice of application methods: brush, roller, spray,...
- Cheap: ~EUR 40 / liter
- Disadvantage: long time constant for final surface resistivity
- □ Final ρ in range 1 10 MΩ/□ depending on layer thickness
- Electrostatic charging problems if ρ too high

Statguard – time stability

Statguard – time stability (2)

Resistive coating - Licron

- Polymer layer (exact composition unknown)
- Surface resistivity ~20 MΩ/□
- Only available in spray cans in Europe limits options for depositing
- Surface quality of latest product version inferior to old product (but still 'OK')
- Problems with HV connection:
 - Characteristic 'thinning' of coating around HV contact with eventual loss of contact
 - Seems to be linked to glue used to secure contact
 - Best results obtained using Epotek EE129 conductive epoxy but still unreliable

Resistive coating – summary of products tested

	Licron	Statguard	Colloidal	Colloidal
			Graphite type I	Graphite type II
Surface resistivity (MΩ/□)	~20	1-10	~0.5	Depends on mix ratio; choose ~0.7
Best application method	Spray	Brush	Silk screen printing	Silk screen printing
Cost, EUR / kg	130	40	670*	240*
Delivery time (weeks)	3	<1	6	6

*Estimate 20m² (10 chambers) / kg using silk screen printing technique

Licron: fragile coating, problems with HV connections over time Statguard: long time constant for stable resistivity (~2 weeks), poor homogeneity

Baseline for technological prototype is colloidal graphite type II

Resistivity as a function of mix ratio

Silk screen printing at local company

 Product requires curing at 170°C – company has suitable drying tunnel
Tin-coated side of glass identified prior to silk-screen printing (paint always on this side)

ic

Surface resistivity: first 70 glasses (35 RPCs)

Data for all 35 chambers built so far

Checking the paint mixture

- Obtain desired mix ratio by weighing the two components (in principle very accurate)
- Resistivity checked in lab using small silk-screen set-up with similar mesh size
- Baked in oven as at company
- Result: $4.3 \pm 1.5 M\Omega/\Box$ (paint for Batch 3)

Measured value at IPNL factor 6 higher than result obtained at company!

Conclusions + Outlook

- A resistive coating suitable for the SDHCAL prototype has been identified
- Many promising products were found to be *not* suitable! (Finding the right one took a long time)
- Advantages:
 - Can be applied using silk-screen printing
 - Coating uniform across whole 1m² surface
 - Very consistent surface resistivities for a given paint batch
 - Resistivity stable in time
 - Coating is mechanically robust
 - Reliable connection to HV contacts
- Disadvantages:
 - Requires high temperature curing (large oven)
 - Obtaining a specific surface resistivity is tricky (but for our purposes we have quite a lot of latitude)

