Japanese LP1 test beam analysis

- Apparent charge loss
 - Situation
 - Possible explanations
 - Evaluating threshold effects
- Pulse analysis
 - 2D signal shape
 - Effect of induced signal

Observed charge loss, B=1T

Observed charge loss, B=0

Hypotheses

- Electron absorption
 - Should contribute
 - Cannot explain the difference between B=0 and B=1T
- Threshold and noise effect
 - Affect hits differently for wider hits
- Gain variation
 - position? electron density?

Evaluating threshold effects: extrapolate from the central charge

- Assuming a Gaussian signal:
 - The central pad would carry a fraction F of the charge

$$F = \left| \int \frac{dY + w/2}{dY - w/2} N(0, \sigma_{PRF}; x) dx \right|$$

$$F = \frac{1}{2} \left(Erf\left(\frac{w/2 - dY}{\sqrt{2}\sigma_{PRF}}\right) + Erf\left(\frac{w/2 + dY}{\sqrt{2}\sigma_{PRF}}\right) \right)$$

w = pad width dY = Ypad - Yhit

- It can be extended to include simple cross-talk between the pads
- Requires σ_{PRF} (and the amount of crosstalk)

Threshold effects

The apparent charge loss is smaller when extrapolating from the central pad Including the crosstalk (estimated at 7%), the two method almost match Depends on the estimate of $\sigma_{_{PRF}}$

Pulse Analysis

Using MarlinTPC hit finder
2D hit study

Pulse definitions

- Pulse time and charge
 - cog of bins above threshold
- Hit time
 - time of the central pulse
- Fitting function

$$F = A t^{P} e^{-P \frac{t-t_{0}}{\tau} + P}$$

Example

Pulse timing

The signal away from the center of the hit appears to come **before** the main signal

Pulse timing

The effect is stronger at short drift distances

Likely explanation: Induction on neighbour pad

When an electron reaches the pad, it induces a signal in the neighbour pads The induced signal appears to be ahead of the main signal

The induced signal arrives "before" the real one

Pulse width, transverse diffusion

The pulse on the neighbour pads is narrower The effect is reduced by diffusion (more direct signal on the neighbours)

Conclusions

- Apparent charge loss
 - No clear explanation yet
 - Need more quantitative approach
 - Ultimately, we need Neffective
- Pulse shape
 - Very clean signals
 - Well understood behaviour

Backup

2010 data: no charge loss

B=0T, smaller charge loss

shaper 60ns, smaller charge loss

Cross talk

Pulse width, shaper 90ns

Pulse width, shaper 60ns

