Study of the Z resolution with Fit Method for Micromegas TPC

David Attié, Deb Bhattacharya, Paul Colas, Serguei Ganjour

CEA-Saclay/IRFU, Gif-sur-Yvette, France

LCTPC-Saclay Working Group Meeting Saclay
May 23, 2014

Transverse and Longitudinal resolutions are major characteristics of the TPC
|n'm this talk focuses on Z resolution
|nw measure time between ionization and detection multiply by drift velocity
IUL ILD TPC requirements: $\sigma_{z} \sim 400 \mu m$
nntical for recoil mass resolution $\mathrm{ZH} \rightarrow$ (ll)X ${ }^{n} \mid$ details are in A. Bellerive AWLC14 talk

Each pad readout provide charge (ADC) as a function of time with 40 ns intervals
It is possible to determine arrival time ($\mathrm{T}_{\max }$) and amplitude (A) for each pad
|IIN best estimation if pulse shape is known
build one hit per row by grouping pulses
${ }^{n}$ In fit Pad Response Function (PRF) to the pulse amplitude A to find XY position of the hit

The TPC acts as a 3D camera taking a snapshot of the passing particle

Data Studied

Study was done with a multi-module setup of the LP Micromegas TPC detector using beam test data at DESY facility (Feb. 17-Mar. 2, 2014)

Dataflow for the beam test:
 $D A Q$ and analysis

DAQ software store data in raw format (calib. view, event dispay, etc)
InIt calibration (pedestal)
Int data taking (beam, cosmic, laser)
IIII slow control (temperature)
High level analysis with MarlinTPC framework
${ }^{n} 1$ In subtract pedestals
numb build hits from pulses
reconstruct tracks (KalmanFit)
analysis (resolution, distortion, etc)
Determine resolution from residuals of the whole 3D track fit, e.g. Kalman algorithm

Possible pulse shape variations:

IIII channel-by-channel (electronics, shaping)
num leading and subleading pulses (charge)
num rise-time and tails (shape)

Improved estimtion of amplitude \mathbf{A} of the group of adjacend pulses can go beyond the current precision for XY position
N deserves special study (foreseen to be implemented in the future)
\rightarrow subleading pulses have quite different shape
\rightarrow implementation has to be at MMHitFinderProcessor level as it is done for GEM

Current study focuses on the leading pulse time reconstruciton only and implemented at MMHitTimeCorrectionProcessor

Previous Study for GEM

Study of time reconstruction with pulse shape method for GEM was reported by F. Müller

The following analytic function was proposed:

$$
f(t)=A \cdot e^{\alpha} \cdot\left(\frac{t-T_{0}}{T_{\text {rise }}}\right)^{\alpha} e^{-\alpha \frac{t-T_{0}}{T_{\text {rise }}}} \boldsymbol{\theta}\left(\mathrm{t}-\mathrm{T}_{0}\right)
$$

A - amplitude T_{0} - offset, $\mathrm{T}_{\text {rise }}$ - risetime, α - pulse width,

Two major obeservations with simulation study:
N|l| dependency of $\mathrm{T}_{\text {rise }}$ and T_{0} on the pulse charge
IIIN inconsistency with drift distances and B-field
Due to such an instability of the fit parameters steek to barycenter and inflection point methods

https://agenda.linearcollider.org/getFile.py/access?contribId=1\&resId=0\&materialId=slides\&confId=6375

We determine arrival time $\mathrm{T}_{\text {max }}$ as

$$
\mathbf{T}_{\max }=\mathrm{T}_{0}+\mathrm{T}_{\mathrm{rise}}
$$

|nll there is strong correlation between T_{0} and $\mathrm{T}_{\text {rise }}$ (limited fit range)
InI the stability of the fitted $\mathbf{T}_{\text {max }}$ is what we have to worry

Modify function in such a way that both A and $\mathbf{T}_{\text {max }}$ are direct fit parameters

$$
\mathrm{f}(\mathrm{t})=\mathrm{A} \cdot\left[\frac{\mathrm{t}-\left(\mathrm{T}_{\text {max }}-\mathrm{T}_{\text {rise }}\right)}{\mathrm{T}_{\text {rise }}}\right]^{\alpha} \mathrm{e}^{-\alpha \frac{\mathrm{t}-\mathrm{T}_{\text {max }}}{T_{\text {rise }}}} \theta\left(\mathrm{t}-\mathrm{T}_{\text {max }}-\mathrm{T}_{\text {rise }}\right)
$$

Modify parametric form according to transfromation $\mathrm{T}_{\text {rise }}=\alpha \beta$ so that $\beta \simeq 1$ at $\alpha=5$ and define $\Delta \mathrm{t}=\mathrm{t}-\mathrm{T}_{\text {max }}$

$$
\mathrm{f}(\mathrm{t})=\mathrm{A} \cdot\left(1+\frac{\Delta \mathrm{t}}{\alpha \beta}\right)^{\alpha} \mathrm{e}^{-\frac{\Delta t}{\beta}} \cdot \theta(\Delta \mathrm{t}+\alpha \beta)
$$

Single pulse fit with 3 floated parameters $(\alpha=5)$: restricted the fit range to +3 and -2 time samples around the maximum bin

Fit each individual (leading) pulse with $f(t)$
nIII normalize amplitude to $A_{\max }$ pulse-by-pulse
InIt force pulse maximum at zero
nut reasonable stability of the pulse shape
\rightarrow difference is minimal around the peak
\rightarrow sizable uncertainty around T_{0}
\rightarrow large variation in tails (can be negative)

Sholder structure indicates $\mathrm{T}_{\text {rise }}$ variation from channel-by-channel (event-by-event)

Direct study of arrival time stability is troublesome with current setup

Jitter of $\mathrm{T}_{\text {max }}$ takes place due to
n|ll absolute variation of the start bin
Nim finit size of the beam (absolute time)
Direct stability test is feasible with facility upgrade
Int includes a few silicon layers for precision beam position determination

However, it is not a problem for the resolution, which can be determined from residuals of the Kalman track fit

Resolution Study
(Z resolution study with the Kalman fitter has been performed

Ine improvement of about 25% is achived at short drift distance tracks
num slightly reduces the improvement at long distance due to diffusion contribution
num current method accounts channel-by-channel/event-by-event pulse shape variation and offers homogenious resolution accross the module

Longitudinal resolution of Micromegas TPC has been studied using the pulse shape fit method
n|ll analytic function for pulse shape parameterization has been proposed
InI fit to leading pulse with 3 floated parameters
${ }^{n}$ reach reasonable stability of the fit in the restricted time range
\& Z resolution study with the Kalman fitter has been performed
Improvement of about 25% is achived at short drift distance tracks
NII slightly reduces the improvement at long distance due to diffusion contribution
InI current method accounts channel-by-channel/event-by-event pulse shape variation and offers homogenious resolution accross the module
Further study foreseen
Int extend the pulse shape fit for the subleading pads
IIII study of impact on $\sigma_{r \phi}$ resolution
N|IN code implementation at MMHitFinderProcessor

> Worth a combination of efforts between MM and GEM groups for further study

Backup

