Numerical study of electrostatic field distortion in Micromegas modules based on TPC

Overview

- A brief introduction to Micromegas detector
- Large prototype TPC
- What is distortion
- Numerical studies
- Future plans

The Micromegas Detector

A micromegas module

Microscopic view from top

Module size \rightarrow 23 cm X 17 cm 24 Rows & 72 columns No of pads \rightarrow 1726 Pad Size \rightarrow 3 mm X 7 mm

Diameter of dielectric spacers ~ 400 micror Mesh wire diameter ~ 18 micron Pitch ~ 45 micron

The ILD concept

Micromegas is a proposed candidate for International Large Detector concept for ILC

The detector performance required for ILC physics measurements*

Physics Process	Measured Quantity	Critical	Critical Detector	Required
		System	Characterstic	Performance
ZHH	Triple Higgs Coupling	Tracker	Lot Energy	
$HZ \rightarrow q\bar{q}b\bar{b}$	Higgs Mass	IIackei	Decelution	24 ~ 407
$ZH \rightarrow ZWW^*$	$B(H \rightarrow WW^*)$	and	Resolution,	310470
$\nu \bar{\nu} W^+ W^-$	$\sigma(e^+e^- \rightarrow \nu \bar{\nu}W^+W^-)$	Calorimeter	$\Delta E/E$	
$ZH \rightarrow \ell^+ \ell^- X$	Higgs Recoil Mass		Charged Particle	
$\mu^+\mu^-(\gamma)$	Luminosity Weighted E_{cm}	Tracker	Momentum Res.,	5×10^{-5}
$ZH + H\nu\nu \to \mu^+\mu^- X$	$B(H \to \mu^+ \mu^-)$		$\Delta p_t / p_t^2$	
$HZ, H \rightarrow b\bar{b}, c\bar{c}, gg$	Higgs Branching Fractions	Vertex	Impact	$5\mu\mathrm{m}\oplus$
$b\bar{b}$	b quark charge asymmetry	Detector	Parameter, δ_b	$10 \mu m/p (GeV/c) \sin^{3/2} \theta$
SUSY, eg. $\tilde{\mu}$ decay	$\tilde{\mu}$ mass	Tracker,	Momentum Res.,	
		Calorimeter	hermeticity	

* ILC Reference Design Report IV-i

Space resolution of resistive Micromegas Test Feb 2014, E = 140 V/cm

The Large Prototype TPC

Description of the TPC

Length = 60 cm

Diameter = 38 cm

Magnetic Field = 1T

visualization of a TPC

Magnetic field reduces transverse diffusion and improves resolution.

5 GeV electron beam

Deb Sankar Bhattacharya, SINP&CEA, IWAD-2014, Kolkata

ç.

-> E -> B

Residual plots

Potential distribution in 'ZX' plane

X-Axis [nn]

Boundary Element Method (BEM) Garfield Deb Sankar Bhattacharya, SINP&CEA, IWAD-2014, Kolkata

Finite Element Method (FEM) COMSOL

Z-component of Field in 'ZX' plane

63

63.5

64

64.5 65

FEM (COMSOL)

68.5 69

68

69.5 70

70.5 ¥ -2.96×107

65.5 66 66.5 67 67.5

BEM (Garfield)

Deb Sankar Bhattacharya, SINP&CEA,

IWAD-2014, Kolkata

Drift and Diffusion of electrons

B = 1 T

Future plans

More detail simulation considering the actual size of the module

Application of resistive layer

Application of magnetic field for signal simulation

Interfacing COMSOL with Garfield++

Acknowledgement

I like to thank my supervisors: Paul Colas, Supratik Mukhopadhyay, Aparajita Bhattacharya.

I express my gratitude to Purba Bhattacharya, Abhik Jash, Supratik Mukhopadhyay, and Nayana Majumdar of SINP, Kolkata for their contributions. I am also thankful to David Attie, Marc Riallot of CEA, Saclay and DESY team for their helps. I am grateful to *CEFIPRA* for their funding.

Thank You

Backup slides

IWAD-2014, Kolkata