

Test Beam 2015 with Micromegas

D. Attié, D. S. Bhattacharya, P. Colas, S. Ganjour

CEA-Saclay/IRFU, Gif-sur-Yvette, France

A. Bellerive, M. Dixit, R. Mehdiyev

Carleton University, Ottawa, Canada

ALCW2015, LCTPC Section KEK, Japan April 20-24, 2015

The EUDET/AIDA test beam facility at DESY provide a 6 GeV electron beam

- LP TPC consists of a field cage equipped with an endplate with 7 windows to receive up to 7 fully equipped modules
- Last beam test of 7 MicroMegas (MM) TPC modules at DESY (Mar. 1– Mar. 14, 2015)
- IN Principal goals of 2015 test beam
 - to test 5 Carbon Loaded Kapton (CLK) and 2 new Black Diamond (BD) MM modules
 - to gather remaining material aimed for publication this year

- IS Valuable help and partial attendance:
 - I. Kaminski (Bonn), K. Fujii (KEK), F. Couderc, B. Tuchming (Saclay)

Prehistory of beam tests with MM modules:

- $\bowtie Mar$ 2010: one-module setup
- ${
 m Im} {
 m May} \ 2011$: cross-talk problem
- Image: Second section with a section of the sec
- Image States and S
- INFeb 2014: same as in 2013 with some pads' connection problem

Two new modules were prepared and tested at CERN test setup (Jan-Feb., 2015)

- ${\tt I\!S\!S}$ New type modules: BD1 and BD2
 - new PCB with resistive kapton to disperse the charge
 - wery solid (like diamond) and uniform
 - pecisely determined resistivity (5 MOhm/□)
- ${}^{\tiny \hbox{\tiny I\!S\!S}}$ Module assembly and test using ${}^{55}\mathrm{Fe}$ x-ray source
 - calibration, pedestal, etc

 - homogeneous gas gain across the module (mesh uniformity) is foreseen

Module Setup

Baseline module configuration for TB2015

2-phase CO_2 cooling support

Image Constraints and the second seco

Several minor incidents occured

- $\ensuremath{\mathbb{R}}\xspace^{\circ}$ Delay at the start of the test
 - missing low voltage 30kW supply (found!)
 - broken S8G module while mounting (replaced by S10X)
 - \blacksquare cooling (possibly lack of CO_2 in TRACI)
 - Imited BD2 V_{mesh} = 370 V (nominal V_{mesh} = 380 V)

Start beam data taking March 6

- Ismount module and restart gas flow (March 7-8)
 - continuous sparking broke one module (automtic night cosmic running)
 - replace S5D by S3B

About 3 whole days of data taking with good gas

Frost deposited on the pipes (-10°)

S. Ganjour

${\ensuremath{\mathbb R}}^{\ensuremath{\mathbb R}}$ Beam, Laser, and Cosmic triggers are deployed

- A cosmic trigger based on
 - \rightarrow 12 scintillator plates
 - ightarrow readout by silicon PMs
 - → SiPM signal discrimination and coincidence logic with NIM modules
- Image: BAQ 120 Hz maximum event taking rate (designed and produced at CEA-Saclay)
 - 6 AFTER chips are digitized in parallel by 8-channel ADC at 20 MHz
 - 4 sequential iterations are needed to readout a FEMi
 - \blacksquare each iteration takes 79 x 511 clock cycles at 20 MHz
 - \blacksquare irreducible dead-time of 8 ms

About 26 W power consumption is currently measured per MM module

 $^{\hbox{\tiny I\!S\!S}}$ Temperature of the circuit rises up to 60°C

- cause a potential damage of electronics
- covect gas to TPC due to a pad heating

Cooling of the electronic circuit is required!

- Image: Second structure in the second structure is and a much larger latent heat than all usual refrigerants
 - the two phases (liquid and gas) can coexist at room temperature under pressure
 - wery small pipes suffice
 - hold high pressure with low material
- $\bowtie 10^{\circ}C$ at $P{=}45~bar$ system operation

About 30°C stable temperature was achieved during operation of 7 MM modules

Recent Results from Beam Test of Micromegas TPC

Module 6 (S3B)

- ☞ 7 MM modules with charge dispersion by resistive anode
 - \blacksquare pads of the size 3×7 mm^2
 - 24 rows with 72 pads each
 - 1728 pads per module
- Beam data taking program:
 - magnetic field: B=0, 1 T
 - \blacksquare drift field: E=140, 230 V/cm
 - $``` z-scan [5-50]cm every <math display="inline">\Delta z = 5\,\mathrm{cm}$
 - $``` shaping time <math display="inline">\tau\text{-scan:}$ 100-1000 ns
 - \blacksquare ZS: 4.5 σ (baseline) and 3 σ
 - beam energy scan [1-5] GeV
 - $^{\rm m}$ varying θ angle up to 30°
- INF Cosmic data: cover a whole LP volume

x=40:baseline beam setupx=-30:complementary beam setup

- ${\tt I\!S\!P}$ Prototype operates with T2K gas
 - ➡ Ar(95%), CF₄(3%), iC₄H₁₀(2%)
 - $^{\shortparallel}$ gas purity: 60 ppm O_2 , 100 ppm H_2O
 - deploy Magboltz calculations

 \blacksquare Absolute T_0 calibration:

- ➡ beam trigger: dedicated z-scan at V_{drift} = 140, 230 V
 - \rightarrow T₀ = 645ns from fit
- cosmic trigger: accumulate a whole LP volume data events

 \rightarrow T₀ = 22 × 40ns = 880ns

	E=140 V/cm	E=230 V/cm
V_d Data	$56.7 \pm 0.1 \mu m/ns$	$74.1 \pm 0.2 \ \mu m/ns$
V_{d} Magboltz	$57.9 \pm 1.0 \mu \mathrm{m/ns}$	$75.5 \pm 1.0 \mu \mathrm{m/ns}$
D_{\perp} Magboltz	$74.5 \pm 2.5 \mu \mathrm{m}/\sqrt{\mathrm{cm}}$	$94.8 \pm 3.1 \mu \mathrm{m}/\sqrt{\mathrm{cm}}$

About 250 ns differnce for T_0 between

S. Ganjour

IS We do not plan to make any big hardware investment before beginning of 2017 ■

- $\ensuremath{\mathbb{R}}\xspace^{\ensuremath{\mathbb{R}$
- - $\stackrel{\scriptstyle \mbox{\tiny \mbox{\tiny m}}}{\rightarrow}$ if there is an endplate II to be tested, or
 - if we have an idea of a fixup for distortions

I™ Priority in the next two years

- \blacksquare to analyze the data
- to understand distortions systematically
- to work on simulations
- publication(s)

As far as hardware is concerned

- design of a large module with cooling and high channel density
- me gating with a large aperture GEM, by doing back-flow measurements
- simulating in hardware an ion disk using a UV lamp

- INF A successful beam test within LCTPC collaboration was performed at DESY with EUDET/AIDA facility in March this year
 - 2 new black diamond (BD) modules and
 5 carbon loaded kapton (CLK) were tested in B=0, 1 T
 - we very vast amount of data taken in various configuration were accumulated
 - \blacksquare (beam and cosmic) data were recorded and then analyzed
 - \blacksquare 2-phase CO₂ cooling long-term operation at 30°C of electronic circuit was confirmed
- \bowtie Publications on behalf of LCTPC collaboration
 - possibly paper on 2010 one-module setup (could be short)
 - detailed paper on 2015 analysis (possibly within one year)
- **Preparation for next beam tests**

 - ${}^{\scriptstyle \hbox{\tiny I\!I\!I\!I}}$ integration for gating and ion back flow tests
 - possibly contribution to endplate II to address distortions

The EUDET/AIDA test beam facility at DESY provide a 6 GeV electron beam

- Setup was designed for a Large TPC Prototype (LPTPC) for the ILC experiment
- LP readout modules operate in a strong magnetic field
 - provides a superconducting solenoid magn⁽ Ø85 cm and a length ∼1 m
 - a magnetic field
 strength of up to
 1.25 T

Consists of a field cage equipped with an endplate with 7 windows to receive up to 7 fully equipped identical modules

Different layouts are considered for ILD: 4-wheel and 8-wheel scheme

Multi-module setup

A multi-module detector sensitive to misalignment and distortions

 \bowtie Low material budget is required for ILD-TPC

- ${}^{\scriptstyle{\hbox{\tiny \tiny IMP}}}$ endplates: ${\leq}0.25 X_0$
- current MM module design:

$$m d/X_0\simeq 0.24$$

Readout system for the MM prototype TPC is conceptually identical to what is deployed in the T2K experiment

(designed and produced at CEA-Saclay)

- IS 72-channel AFTER chip
 - charge signal amplification
 - ➡ shaping (100 ns)
 - waveform sampling in a 511-time-bin SCA
- 4 AFTER chips are mounted on a Front-End Card (FECi)
- ☞ 6 FECi are digitalized and readout by FE Mezzanine (FEMi)
- Each FEMi communicates with
 a Data Concentrator Card
 (DCC) over duplex optical link
- DCC transfers events to DAQ PC via a Gigabit Ethernet port

