Simulation of Track Distortion due to Inhomogeneity of Electric Field in Micromegas modules

Deb Sankar Bhattacharya

PhD student SINP, Kolkata & CEA Saclay WP meeting 21 January 2016, SINP, Kolkata

Motivation of the Study

- Developing a better understanding on Distortion
- Understanding the mis-alignment.
- Exploring scope for improvement.

Simulation Tool:

>Garfield Framework

>Field Solver -> neBEM

≻Gas Transport → Magboltz

Primary Ionization → Heed

► Electron Drift → Monte Carlo

The module arrangement

Micromegas modules on the **LPTPC endplate.**

Module size: 17 cm × 22 cm. reference frame is in r-phi system.

Module size: 3.4 cm × 3.4 cm. reference frame is Cartesian.

Drift of electrons (Monte Carlo) at B = 1 T.

Distortion comparison at B = 0 T

Experimental observation (Thesis W. Wang) **Observation from Simulation**

Observation from Simulation

Experimental observation

Due to the curve edge, there exist both Y and X component Of (distorted) electric field.

 $\mathsf{E}_{\mathsf{dist}}$

Non zero E_x gives rise residuals in X at B = 0T.

Х

System used:

(1) DELL Precision T7500 Work Station/12 cores/ 72 GB RAM.(2)Xeon cluster @ 1.2 GHz/6 cores/ 16 GB RAM.

Thank You

Backup Slides

At the vicinity of the Module edges,

The three components of the Electric Fields are plotted in X, Y and Z

Ez:Ey:Ex

