

6th - 10th September 2015

Lyon - France

2A-WT-P-02.02

Critical Current Characterization under Pure Bending Strains of Pre-bent Cu-Nb/Nb₃Sn Strands for Practical React-and-Wind Process

Masahiro Sugimoto^{*}, Hirokazu Tsubouchi^{*}, Sakaru Endoh^{*}, AkiraTakagi^{*}, and <u>Kota Katayama^{*}</u> Kazuo Watanabe^{**}, Satoshi Awaji^{**}, and Hidetoshi Oguro^{**}

*Furukawa Electric Co., Ltd., Tochigi 321-1493, Japan **High Field Laboratory for Superconducting Materials, Institute for Material Research, Tohoku University, Sendai 980-8577, Japan

Abstract

- Nb-rod-method Cu-Nb reinforced Nb₃Sn (Cu-Nb/Nb₃Sn) wires have been successfully developed for commercialization of the React-and-Wind (R&W) processed Nb₃Sn coils. Superconducting performance of the Cu-Nb/Nb₃Sn wires are improved by applying the pre-bending treatment at room temperature, because of releasing the residual stress of Nb₃Sn filaments (pre-bending strain effects).
- The purpose of this study is to obtain information of the efficient use of the prebending strain effects for optimizing critical current (*I*_c) characteristics under pure bending strain on the R&W coil design.
- The Cu-Nb/Nb₃Sn strands of diameter 0.8 mm were heat-treated at 670 °C for 96 hours on stainless steel grooved cylindrical holders of different radii 10.1-32.1 mm. After the half of the reacted strands were applied repeating pre-bending strain ±0.5%, each of the pre-bent strands and as-reacted (without pre-bent) strands was transferred to a Ti-6Al-4V alloy grooved cylindrical holder of radius 15.6 mm, and those *I_c* measurements were carried out under applied pure bending strains range from -0.9% to +0.84% at 11-17 T, 4.2 K.
- As a result, the pre-bent strand showed no deterioration of I_c in the applied pure bending strain of range of +0.5% from -0.5% and had larger I_c than that of as-reacted strand at no pure-bending strain. In this paper, the I_c enhancements of the pre-bent Cu-Nb/Nb₃Sn strands under pure bending strains are analyzed by using the I_c characteristics under axial strains.

Nb-rod-method Cu-Nb/Nb₃Sn strands

Advantage of Nb-rod-method Cu-Nb reinforced Nb₃Sn strand

- ✓ Mass productivity is superior to In-situ-method.
- Design of the equivalent diameter of Nb-rod, the placement, the volume ratio for control of the properties.
- \checkmark High $I_{\rm c}$ characteristics under the large axial tensile stress
- High RRR, because impurities are not easily incorporated into the Cu matrix.

TABLE I MAIN PARAMETERS OF CU-NB/NB₃SN STRANDS

Items	Unit	Parameter	
Superconductor	-	Bronze- processed Nb ₃ Sn	
Reinforcement	-	Nb-rod-method Cu- 20vol%Nb	
Bronze	-	Cu-14wt%Sn-0.2wt%Ti	
Sn diffusion barrier	-	Та	
Filament diameter	μm	3.3	
Diameter	mm	0.80	
Filament region dia.	mm	0.51	
Volume fraction Cu / Cu-Nb / non-Cu (Ta)	%	18/37/45(5)	
Twist pitch /direction	mm	24 / Left hand helix	

Fig. 1. Cross-section of Nb-rod-method Cu-Nb/Nb₃Sn strand

TABLE II Strain characteristics Determined by using ITER 2008 strain scaling parameters for the tested strands

Parameter		As-reacted	Pre-bent
C_{a1}	Strain fitting constant	43.84	48.17
C _{a2}	Strain fitting constant	9.37	1.42
<i>E</i> 0a	Residual strain component	0.113%	0.175%
ε _m	Tensile strain at the maximum properties	-0.291%	-0.143%
B _{c2m0}	Upper critical field at zero temperature and strain (T)	35.00	34.84
T _{cm0}	Upper critical temperature at zero field and strain (K)	11.26	10.49
С	Scaling constant (AT)	99823	85025
p	Low field exponent of the pinning force	0.834	0.750
q	High field exponent of the pinning force	2.195	1.819

$$\begin{split} I_{c}(B,T,\varepsilon_{0}) &= \pi d^{2} \left[4(1+\lambda) \right]^{-1} J_{c}(B,T,\varepsilon_{0}) \\ J_{c}(B,T,\varepsilon) &= C B^{-1} s(\varepsilon) (1-t^{1.52}) (1-t^{2}) b^{p} (1-b)^{q} \\ B_{C2}^{*}(T,\varepsilon) &= B_{C20m}^{*} s(\varepsilon) (1-t^{1.52}) \\ T_{C}^{*}(T,\varepsilon) &= T_{C0m}^{*} s(\varepsilon) (1^{1/3} (1-B/B_{C2}^{*}(0,\varepsilon))^{1/1.52} \\ s(\varepsilon) &= 1 + \left(\left(C_{a1} \sqrt{\varepsilon_{sh}^{2} + \varepsilon_{0a}^{2}} - \sqrt{(\varepsilon - \varepsilon_{sh})^{2} + \varepsilon_{0a}^{2}} \right) - C_{s2} \varepsilon \right) \\ \times (1-C_{a1} \varepsilon_{0a})^{-1} \\ \varepsilon_{sh} &= C_{a2} \varepsilon_{0a} / \sqrt{C_{a1}^{2} - C_{s2}^{2}} \\ \varepsilon &= \varepsilon_{applied} + \varepsilon_{m} \end{split}$$

Fig. 2. I_c characteristics of Cu-Nb/Nb₃Sn strands as a function of axial tensile strain. Solid and dashed lines are calculated by using ITER2008 strain scaling parameters of TABLE II.

Reference

- L. Bottura and B. Bordini, "J_c(B,T,e) Parameterization for the ITER Nb₃Sn Production," IEEE Trans. Appl. Supercond., vol. 19, no. 3, Jun. 2009, pp. 1521-1524.
- M. Sugimoto, H. Tsubouchi, S. Endoh, A. Takagi, K. Watanabe, S. Awaji, and H. Oguro, "Development of Nb-rod-method Cu-Nb reinforced Nb₃Sn Rutherford cables for react-and-wind processed wide-bore high magnetic field coils," *IEEE Trans. Appl. Supercond.*, vol. 25, no. 3, Jun. 2015, Art. ID. 6000605.

Heat treatments, pre-bending and purebending process

Fig. 3. Schematic image of Heat treatments, pre-bending and the pure-bending process.

TABLE III

Process condition on Heat treatment and Pre-bending

Heat- treatment	Pre-bending for $\varepsilon_{\rm pb}$ =±0.5%		Pure-bending	
R _h (mm)	R _{pb1} (mm)	R _{pb2} (mm)	<i>R</i> _b (mm)	€ _{pure-bend.} (%)
32.1	22.9	54.2	15.6	+0.84
24.6	18.8	35.8	15.6	+0.60
19.6	15.8	26.1	15.6	+0.33
15.6	13.1	19.5	15.6	0
12.9	11.2	15.5	15.6	-0.34
11.3	10.0	13.2	15.6	-0.62
10.1	9.0	11.6	15.6	-0.90

Fig. 4. I_c -B characteristics under pure-bending strains of Cu-Nb/Nb₃Sn strand.

Pure-bending strain dependence of I_c and n-value

The relationship between I_c and the pure bending strain is shown in Fig. 5(a), and that of *n*-values is shown in Fig. 5(b). The pre-bent strands showed no deterioration of I_c in the applied pure bending strain of range of +0.5% from -0.5% and had larger I_c than that of as-reacted strand at no pure-bending strain. The I_c increase of pre-bent strands were conformed at 12-17 T. The degradation of *n*-values occurred at -0.90% because the peak pure-bending strain was larger than the irreversible strains e_{irr} =0.85% of this strand. The Nb₃Sn filaments on the inside of the Ta barrier are supposed to be partially broken.

Analysis of pure-bending strain effects of pre-bent Cu-Nb/Nb₃Sn strands for practical R&W process

Fig. 6. Cross-section model of non-copper showing the neutral axis shift of δ .

Perfect current transfer model

$$\begin{split} I_{c} &= 2 \int_{-R_{uc}}^{R_{uc}} j_{c}(\varepsilon_{y}) \sqrt{R_{uc}^{2} - y^{2}} \, \mathrm{d}y \\ \varepsilon_{y} &= \varepsilon_{0} + \varepsilon_{by} \qquad \varepsilon_{by} = (y + \delta)/(R_{b} - \delta) \end{split}$$

No current transfer model

$$I_{c} = 2\pi \int_{0}^{R_{c}} \left\{ \min \left| j_{c}(\varepsilon_{y}) \right|_{\varepsilon_{y}=\varepsilon_{0}-\varepsilon_{by}}^{\varepsilon_{y}=\varepsilon_{0}-\varepsilon_{by}} \right\} dy$$
$$\varepsilon_{by} = \begin{cases} -(y+\delta)/(R_{b}-\delta) & \text{for } j_{c}(\varepsilon_{0}-y/R_{b}) < j_{c}(\varepsilon_{0}+y/R_{b}) \\ +(y+\delta)/(R_{b}-\delta) & \text{for } j_{c}(\varepsilon_{0}-y/R_{b}) > j_{c}(\varepsilon_{0}+y/R_{b}) \end{cases}$$

Fig.7. Comparison between the measured I_c and calculated I_c values of (a) Pre-bent strands and (b) As-reacted strands. Perfect current transfer model (solid lines) fit well comparing to no current transfer model (dashed lines).

REFERENCES

- J. W. Ekin, "Strain Scaling law and the prediction of uniaxial and bending strain effects in multifilamentary superconductors," in *Filamentary A15 Superconductors*, Proceedings of the topical conference on A15 superconductors, Ed by M. Suenaga and A. Clark, Plenum Press, New York, 1980, pp. 187-203.
- M. Takayasu, L. Chiesa, d. L. Harris, A. Allegritti, and J. V. Minervini, "Pure bending strains of Nb₃Sn wires," Supercond. Sci. Technol., vol. 24, 2011, Art. ID. 045012.

Fig. 8. $\mathit{I}_{\rm c}$ values calculated considering of neutral shift δ

The neutral axial shifts will be caused by the spring back effects of the strand after the pure-bending process. The neutral shift δ at positive pure-bending and that at negative pure-bending of the pre-bent Cu-Nb/Nb₃Sn strands were assumed to be -0.09 mm and -0.02 mm. On the other hand, those of as-reacted strands were assumed to be +0.03 mm and -0.04 mm. The difference will be related to residual strain.

Summary

- Critical current characteristics under pure bending strains of pre-bent Cu-Nb/Nb₃Sn strands were investigated.
 - I_c values of pre-bent strands were increased at pure-bending strain from -0.5% to 0.5% by the pre-bending treatment of $\varepsilon_{pb} = \pm 0.5\%$ than those of the as-reacted strands.
- Analysis based perfect current transfer model can quantitatively explain the peak pure-bending strain dependence of *I_c* considering neutral axis shifts.
- It was confirmed that the appropriate pre-bending process of the Cu-Nb/Nb₃Sn wires is very useful for practical manufacturing of R&W processed Nb₃Sn magnets.