11 décembre 2009
Edelweiss-ID : des détecteurs innovants pour traquer la matière noire de la Voie lactée

Les détecteurs de nouvelle génération de l'expérience de recherche de matière noire Edelweiss viennent de livrer leurs premiers résultats. Remarquablement fiables et robustes, ils permettent une excellente suppression de signaux parasites. A peine installés et pas encore au complet, ces nouveaux détecteurs permettent déjà à l'expérience d'être 10 fois plus sensible qu'auparavant dans sa capacité à mesurer une interaction de « wimp»1 , particule massive interagissant faiblement, candidate à la matière noire.

Ce saut de sensibilité permet à l'expérience de rejoindre le « peloton de tête » mondial des expériences cherchant à détecter ces nouvelles particules. Ces premiers résultats viennent d'être soumis à publication dans la revue Physics Letter B 

 Article soumis à à Phys Lett. B en ligne

 En 2010 la masse utile de détecteurs sera triplée pour améliorer encore le potentiel de découverte.

 

17 avril 2009

Voilà maintenant plus de deux ans qu'Antares 1, télescope sous-marin immergé à 2500 mètres dans les abysses méditerranéens, scrute le ciel au travers de la Terre en détectant des neutrinos. Aujourd'hui plus d'un millier d'entre eux ont déjà été observés, permettant de dresser les premières vues du ciel et d'y rechercher des neutrinos cosmiques très énergétiques, témoins des phénomènes les plus violents de l'Univers.

 

 

Les neutrinos sont des particules qui interagissent très peu avec la matière. Émis dans les cataclysmes les plus violents de l'Univers, ils pourraient permettre de prouver que ces phénomènes sont à l'origine du rayonnement cosmique, essentiellement des protons, qui bombardent la Terre en permanence. Ces protons nous parviennent en effet déviés par les champs magnétiques intergalactiques, nous empêchant de déterminer leur origine.

 

La détection des neutrinos est un défi qu'il n'est possible de relever qu'avec d'immenses détecteurs, protégés de ce même rayonnement cosmique. Antares, installé au large de Toulon, s'en protège grâce à un blindage naturel de 2000 mètres d'eau. Le déploiement du détecteur, qui a duré deux ans, s'est achevé en mai 2008. Aujourd'hui 885 « yeux », leur électronique de lecture et de traitement des données, - imaginés et construits à CEA-Irfu - s'égrènent par groupe de trois le long de 12 lignes souples de 450 mètres de haut. Ces lignes, plus hautes que la tour Eiffel, sont ancrées aux fonds marins sur un espace équivalent à 4 terrains de football.

23 décembre 2009

Après l'accident survenu sur l'accélérateur du LHC quelques jours après sa mise en service en 2008, la collaboration ATLAS était impatiente d'observer  de « vrais »  événements produits au centre du détecteur, et de faire fonctionner l'appareillage en conditions réelles. Après quelques jours d'essais avec un seul faisceau, Atlas enregistrait le 23 novembre ses premières collisions proton-proton, à l'énergie d'injection dans le LHC (450 GeV par faisceau, soit 900 GeV dans le centre de masse de la collision). Les analyses ont permis de reconstruire des particules instables connues en détectant leurs produits de désintégration, prouvant le bon fonctionnement des détecteurs et des logiciels associés. Le groupe Atlas du service de physique de particules de l'Irfu a aussi pu vérifier le comportement des sous-ensembles des détecteurs à muons, et du calorimètre électromagnétique dont ils ont la responsabilité. Des collisions à 2,38 TeV (1,19 TeV par faisceau) ont été enregistrées avant la mise au repos du LHC le 16 décembre, établissant un nouveau record mondial pour l'accélérateur de particules le plus puissant du monde. Le LHC redémarrera en février 2010 après un court arrêt technique en vue de collisions à plus haute énergie et à plus haute intensité. La collaboration ATLAS sera prête pour comprendre ces collisions encore jamais observées.

10 octobre 2009

Les premières données du sondage Boss (Baryon oscillation spectroscopic survey) ont été obtenues dans la nuit du 14 au 15 septembre. Cette expérience, dédiée à la recherche des oscillations de baryons, ouvre une nouvelle ère de recherche sur l'énergie noire et l'évolution de l'Univers. Elle implique notamment des équipes de l'IN2P3(1)/CNRS, de l'INSU(2)/CNRS et du CEA.

23 décembre 2009

Depuis le redémarrage du LHC le 20 novembre, CMS a bénéficié des excellentes performances d'opération du collisionneur pour enregistrer de nombreuses données utiles à la vérification de son bon fonctionnement et à son étalonnage. CMS a démontré durant cette période la stabilité des conditions de travail du détecteur, ainsi que l'efficacité de sa chaîne d'analyse des données, depuis le détecteur jusqu'aux équipes d'analyse à travers le monde, et ceci en dépit de conditions de faisceaux changeant très rapidement.

 

 

Du premier faisceau à la première collision

Le 20 novembre, le premier faisceau a atteint CMS à l'énergie d'injection (450 GeV) autour de 19 h. Dès 23 h 30, le deuxième faisceau a à son tour atteint le détecteur. CMS a tout de suite mis à profit les interactions entre le faisceau circulant et la matière environnante, en détectant dans les calorimètres électromagnétique (ECal) et hadronique (HCal), ainsi que dans les chambres à muons des bouchons, les particules ainsi produites. Ces beam splash events ont permis, par exemple, d'améliorer la synchronisation des deux calorimètres et aussi de tester les performances des chambres à muons.

Le 23 novembre vers 13 h, pour la première fois, deux faisceaux ont circulé simultanément dans le LHC. Dès le début de l'après-midi, les faisceaux ont été conduits à se croiser aux points où sont situés les détecteurs Atlas et CMS. Dans la soirée, les faisceaux ont été optimisés pour CMS qui a pu enregistrer ses premières « vraies » collisions.

14 septembre 2009
A Fermilab, la découverte d’un mode rare de production de quark top affermit le modèle standard de la physique des particules.

Le quark top est une particule élémentaire étonnante. Il est le plus lourd des six quarks du modèle standard de la physique des particules puisqu’il « pèse » autant qu’un atome d’or. Il est aussi particulièrement fugace et se désintègre en d’autres particules avant même de former des particules « composites » comme le font les autres quarks plus légers. Il a été découvert en 1995 par les expériences D0 et CDF au Fermilab près de Chicago, le seul accélérateur de particule suffisamment puissant pour produire cette particule élémentaire de masse si élevée. Jusqu’ici, les deux expériences n’avaient observé le top que dans la production de paires quark-antiquark. Elles viennent de mettre en évidence un autre type de réaction encore plus rare où un seul quark top est produit en « célibataire ». Au-delà de la prouesse expérimentale, cette découverte qui a fait l'objet d’un article dans la revue Physical Review Letters1, permet de mesurer un des paramètres du modèle standard et confirme que les six quarks que nous connaissons sont les seuls nécessaires.  

  

22 avril 2009

Depuis que le modèle standard de la physique des particules est confronté à l'expérience,  rien n'a pu encore le faire vaciller. De toutes les particules qu'il décrit, seul le boson de Higgs n'a pas encore été découvert. Mais le modèle standard n'est vraisemblablement pas la théorie ultime : il n'intègre pas la gravitation et de nombreuses observations expérimentales restent  inexpliquées.

Une nouvelle invariance, appelée supersymétrie, a été proposée dans les années 1970. Elle associe entre elles des particules ayant des spins différents (bosons de spin entier et fermions de spin demi-entier). Il est possible de construire des extensions supersymétriques du modèle standard qui viennent  résoudre de  façon  élégante des   problèmes mathématiques qui surgissent dans le calcul de la masse du boson de Higgs.

Ces extensions marquent une étape vers une théorie complète des interactions qui permettra d'unifier toutes les interactions; électrique, magnétique, gravitationnelle, faible et nucléaire. Jusqu'ici, aucun partenaire supersymétrique de particules  connues à ce jour n'a été découvert. L'expérience D01  qui prend des données auprès du Tevatron de Fermilab, (Etats-Unis) vient de  publier2 des résultats concernant les recherches de bosons de Higgs qui sont nécessaires aux extensions supersymétriques du modèle standard. L'analyse a été réalisée avec l'ensemble des données disponible à ce jour, soit plus d'un milliard et demi d'événements.

 

 

 

 

Trouver un higgs supersymétrique léger 

 

Au Tevatron, collisionneur proton-antiproton de haute énergie, les bosons de Higgs supersymétriques pourraient être produits en abondance s'ils sont suffisamment légers. Un canal privilégié pour les mettre en évidence, est celui de leur production associée avec un quark beau3 (b),  H0b. Comme les bosons de Higgs supersymétriques légers sont supposés eux-mêmes se désintégrer, dans 90% des cas, en deux quarks beaux, la recherche de la production de ce type d'événements revient donc à identifier des événements ayant au moins 3 jets4 issus de quarks beaux dans l'état final.

06 avril 2009

Avant l'entrée en fonction du LHC, le Tevatron situé au Fermi National Accelerator Laboratory, Fermilab (près de Chicago, États-Unis) reste le collisionneur le plus puissant du monde et le seul endroit où le quark top1 peut être produit.

L'expérience DØ vient de publier2 les résultats de mesure du taux de production de paires de quarks top-antitop. Cette quantité, dépendante de la valeur de la masse du quark top, permet de donner une prédiction sur cette masse dans le cadre du modèle standard3. Découvert en 1995 au Fermilab, le quark top reste un sujet de recherche très actif. Les méthodes d'analyse et la quantité de données ne cessent de s'améliorer permettant d'accroitre la précision de mesure de la masse du quark top.  La mesure précise de cette valeur, associée à d'autres résultats de mesures de précision, permet d'estimer la valeur la plus probable de la masse du boson de Higgs. Ainsi l'étau se resserre autour de la quête du boson de Higgs en améliorant les mesures de la masse du quark top.

 

 

02 juin 2009

La deuxième phase de l'expérience internationale Double Chooz a été officiellement lancée, mercredi 20 mai. La déclaration d'intention signée par les quatre partenaires (CEA, CNRS, EDF, région Champagne-Ardenne) est le premier pas essentiel vers la construction du second détecteur consacré aux recherches sur les neutrinos, auprès de la centrale nucléaire de Chooz.

Les participants avaient auparavant visité le site du premier détecteur, actuellement en construction. Il devrait détecter les premiers neutrinos issus de la centrale dès la fin de l'année et cherchera à mesurer une disparition de neutrinos issus du flux primaire.  Le second détecteur sera en opération dans deux ans. Il mesurera précisément le flux et le spectre en énergie des neutrinos émis et conduira à une importante amélioration du contrôle et de la précision des mesures.

11 septembre 2009

Depuis le 23 Avril 2009, le MSS (Magnet Safety System) est opérationnel au J-PARC (Japan Proton Accelerator Research Complex, Tokaï, Japon).

  

Le MSS, conçu et réalisé par l'Irfu / SIS, protège 28 aimants supraconducteurs à fonctions combinées (dipôles et quadripôles). Ces aimants, parcourus par un courant de 4400 A, courbent un faisceau de protons selon un arc de 90 degrés, dans un tunnel de 150 m de long. Les protons sont destinés à produire des neutrinos envoyés vers le détecteur Super-Kamiokande, à 295 km à l'ouest de Tokai, en passant sous la surface de la terre.

  

En plus de ces 28 aimants, le MSS protège également 6 aimants de correction supraconducteurs (courant maximum = +/- 50 A).

  

Lorsque le MSS détecte une transition des aimants (un quench) ou un défaut sur leur circuit électrique, il commande la diminution du courant et la décharge de l'énergie stockée dans les bobines. Il empêche aussi les protons d'entrer dans la ligne de faisceau de T2K, dans un délai de 10 millisecondes.

03 septembre 2009

 

Les équipes d'ingénieurs et de physiciens de l'Irfu ont réussi l'intégration de deux grandes chambres, permettant de reconstruire les traces de particules chargées. Ces chambres caractériseront le faisceau de neutrinos de l'expérience T2K (Tokai to Kamiokande). Ce sont les premières grandes chambres TPC équipées de détecteurs de type micro-structure (Micromegas). La surface de détection de l'ensemble est très importante (presque 9m²) et le nombre de canaux d'électronique en proportion (124000). L'Irfu a réalisé l'ensemble du système de détection des trois grandes chambres à échantillonnage temporel (TPC), comprenant 72 détecteurs Micromegas et toute l'électronique frontale. Une nouvelle puce (AFTER) et deux cartes électroniques, permettant de transmettre au système d'acquisition les signaux numérisés à travers un ensemble de 72 liens optiques gigabit ont été spécialement conçues par les ingénieurs du SEDI (service d'Electronique des Détecteurs et d'Informatique). Avant leur installation au Japon dès cet  automne, les deux chambres ont été testées, à TRIUMF (Canada), en février et juin. 

 

 

Les premiers tests en faisceau et avec des rayons cosmiques ont permis de reconstruire des traces avec la précision de l'information attendue. Il s'agit d'un jalon important dans la réalisation d'un détecteur clé pour l'expérience T2K.

25 mai 2009
La mesure la plus précise du taux de supernovas à effondrement gravitationnel dans l’Univers 3,7 milliards d’années avant notre ère vient d’être publiée

La collaboration SNLS (Supernova Legacy Survey, au télescope France-Canada-Hawaï) vient d'obtenir la meilleure mesure au monde du taux d'explosion des étoiles massives alors que l'univers n'était âgé que de 10 milliards d'années. Ce résultat, fruit d'un travail mené par une équipe de chercheurs du Service de physique des particules de  l'Irfu 1 au CEA-Saclay sur les trois premières années de données de SNLS, est crucial pour compréhension de l'origine et de l'évolution des éléments chimiques dans le milieu interstellaire.  Cette mesure semble indiquer qu'il y a aujourd'hui 2 à 4 fois moins de supernovas qu'il y a 3,7 milliards d'années. Notre Univers serait-il en train de s'éteindre ?

 

 

 

 

   Des supernovas pour ensemencer l'Univers

 

Une supernova est une étoile qui devient brutalement aussi brillante que toute une galaxie. Vue de la Terre elle apparait comme une étoile nouvelle. Elle correspond en fait à l'explosion d'une étoile, qui s'accompagne d'une augmentation brève mais fantastiquement grande de sa luminosité.

 

Les supernovas sont des événements rares : leur taux est estimé à environ une à trois par siècle dans notre Voie lactée. Mais il est à noter qu'à notre époque aucune supernova n'a été observée dans notre Galaxie depuis l'invention du télescope ! La dernière date du temps de Kepler en 1604.

 

Les supernovas jouent un rôle essentiel dans l'Univers, car c'est lors de leur explosion que les étoiles libèrent les éléments chimiques qu'elles ont synthétisés tout au long de leur vie et en produisent même de plus lourds. Ces éléments sont nécessaires à la constitution de planètes comme la Terre et à l'apparition de la vie. De plus, l'onde de choc de la supernova favorise la formation de nouvelles étoiles en amorçant ou en accélérant la contraction de régions du milieu interstellaire.

 

Retour en haut