5 sujets /DAp/LEPCHE

Dernière mise à jour : 13-12-2019


 

INTERACTIONS ENTRE RAYONS COSMIQUES ET MILIEU INTERSTELLAIRE

SL-DRF-20-0641

Laboratoire d'accueil :

Direction d’Astrophysique (DAP)

Laboratoire d’Etudes des Phénomènes Cosmiques de Haute Energie (LEPCHE)

Saclay

Contact :

Isabelle GRENIER

Date souhaitée pour le début de la thèse : 01-09-2020

Contact :

Isabelle GRENIER
Université Paris Diderot - DSM/IRFU/SAp/LEPCHE

01 69 08 44 00

Directeur de thèse :

Isabelle GRENIER
Université Paris Diderot - DSM/IRFU/SAp/LEPCHE

01 69 08 44 00

Page perso : https://www.nasa.gov/mission_pages/GLAST/team/bio_grenier.html

Labo : http://irfu.cea.fr/dap/

Les rayons cosmiques sont-ils des acteurs ou des passagers dans l'évolution des galaxies ’ Selon les modèles actuels d’évolution des galaxies, les étoiles se forment trop efficacement et trop tôt dans l'histoire de l'Univers. Les phénomènes de haute énergie tels que les jets de trous noirs supermassifs et les explosions de supernova modifient l’évolution du gaz et des champs magnétiques dans et autour d’une galaxie, mais leur impact ne permet pas d'expliquer des observations clés telles que les puissants vents galactiques. Les rayons cosmiques peuvent jouer un rôle particulier dans cette évolution en transférant une part de l’énergie des supernovae vers le milieu interstellaire sur des milliers de parsecs et pendant des dizaines de millions d'années autour de leur source, en augmentant la flottabilité du gaz et en exerçant une pression anisotrope le long des lignes de champ magnétique et vers l’extérieur de la galaxie. Pour évaluer leur impact, il est essentiel de comprendre comment les rayons cosmiques se propagent dans une galaxie et comment leurs propriétés de transport varient selon les conditions interstellaires ambiantes. Pour mieux cerner ce problème, nous proposons de comparer pour la première fois la distribution de rayons cosmiques obtenue dans des simulations numériques de nuages interstellaires avec des mesures déduites d’observations multi-longueurs d'onde dans des régions comparables de la Voie Lactée. Une équipe du département d'Astrophysique encadrera le doctorant sur les simulations de haute performance et sur les différentes observations du milieu interstellaire, de la topologie magnétique et des rayons cosmiques. Le doctorant travaillera également dans le cadre de la collaboration internationale pour le télescope spatial gamma Fermi.
Champ magnétique intergalactique et sursauts gamma avec CTA

SL-DRF-20-0498

Domaine de recherche : Astrophysique
Laboratoire d'accueil :

Direction d’Astrophysique (DAP)

Laboratoire d’Etudes des Phénomènes Cosmiques de Haute Energie (LEPCHE)

Saclay

Contact :

Renaud Belmont

Thierry STOLARCZYK

Date souhaitée pour le début de la thèse : 01-09-2020

Contact :

Renaud Belmont
Université de Paris (Paris 7) - DRF/IRFU/DAP/LEPCHE


Directeur de thèse :

Thierry STOLARCZYK
CEA - DRF/IRFU/DAp/LEPCHE

+33 1 69 08 78 12

Page perso : http://irfu.cea.fr/Pisp/thierry.stolarczyk/

Labo : http://irfu.cea.fr/en/Phocea/Vie_des_labos/Ast/ast_technique.php?id_ast=3709

Voir aussi : http://www.cta-observatory.org/

Le champ magnétique intergalactique qui baigne les vides cosmiques est très probablement une relique des premiers instants de l’Univers. Le but de cette thèse est de chercher les signatures de ce champ dans les observations de sursauts gamma à très haute énergie, et notamment de prédire les capacités du futur observatoire CTA à contraindre ses propriétés. Il s’agit d’un travail qui mêle étroitement modélisation théorique et analyse de données simulées de CTA.
Formation, évolution et impact des couples stellaires

SL-DRF-20-0587

Domaine de recherche : Astrophysique
Laboratoire d'accueil :

Direction d’Astrophysique (DAP)

Laboratoire d’Etudes des Phénomènes Cosmiques de Haute Energie (LEPCHE)

Saclay

Contact :

Sylvain CHATY

Date souhaitée pour le début de la thèse : 01-10-2020

Contact :

Sylvain CHATY
Université de Paris et Institut Universitaire de France - LEPCHE/Laboratoire d’Etudes des Phénomènes Cosmiques de Haute Energie

01 57 27 53 04

Directeur de thèse :

Sylvain CHATY
Université de Paris et Institut Universitaire de France - LEPCHE/Laboratoire d’Etudes des Phénomènes Cosmiques de Haute Energie

01 57 27 53 04

Page perso : www.linkedin.com/in/sylvainchaty

Labo : irfu.cea.fr/dap

Les couples stellaires sont légion dans notre Galaxie: plus de 70% des étoiles massives vivent en couple au cours de leur vie stellaire. Cette thèse a pour but d'étudier comment se forment ces binaires, comment elles évoluent, et quel est leur impact sur leur environnement.



Les étoiles massives vivent en couple...

Plusieurs révolutions se sont produites ces dernières années dans le domaine stellaire. La première est la réalisation que la plupart (plus de 70%) des étoiles massives vivent au sein d’un couple stellaire (Sana et al. 2012). Cette binarité a des conséquences majeures sur l'évolution des étoiles, fortement influencée par la présence d’un « compagnon », en particulier via le transfert de matière et de moment cinétique (Chaty 2013). Le destin de ces couples stellaires est déterminé par l’évolution de chaque composante, l’étoile la plus massive s’effondrant en premier lors de l’explosion de supernova, donnant naissance à une étoile à neutron ou à un trou noir (Tauris et al. 2017). C’est ainsi que naît un couple stellaire accrétant, formé d’un astre compact en orbite autour de son compagnon, parmi les astres les plus fascinants de l’Univers. L’étoile compagnon, massive, se caractérise par une éjection de vent plus ou moins conséquente en fonction de sa métallicité, et l'astre compact, baignant dans ce vent, attire une partie de cette matière, qui, accrétée, s'accumule à la surface, chauffée à des températures de plusieurs millions de degrés, émettant principalement dans le domaine des rayons X. Ces astres donnent régulièrement lieu à des variations extrêmes de luminosité, de plusieurs ordres de grandeur sur l’ensemble du spectre électromagnétique, sur des échelles de temps allant de la seconde au mois.



...jusqu’à fusionner...

La deuxième révolution est la détection, par les interféromètres de la collaboration LIGO/Virgo, d’ondes gravitationnelles provenant de la fusion de deux trous noirs (première détection en septembre 2015) puis de deux étoiles à neutron (août 2017). Cette fusion intervient à la fin de la vie de certains couples stellaires, dépendant de leur masse, de leur séparation orbitale, et de plusieurs autres paramètres en jeu lors de leur évolution. La fusion d’étoiles à neutron s’accompagne d’une émission d’ondes électromagnétiques, nommée kilonova, et des observations spectroscopiques ont prouvé que des atomes lourds étaient créés lors de cet événement, via le « processus rapide » de nucléosynthèse (r-process).



...avec un impact sur leur environnement!

Il est aujourd’hui établi que l’effondrement d’étoiles massives en supernova joue un rôle clé dans l'enrichissement du milieu interstellaire -depuis les atomes lourds jusqu’aux molécules complexes-, ainsi que dans le déclenchement de la formation de nouvelles étoiles. Par contre, l’impact du vent de ces étoiles massives sur leur environnement, tout au long de leur vie, a été longtemps négligé. Or cette matière éjectée se disperse dans le milieu environnant, jusqu’à entrer en collision avec un milieu interstellaire dense, potentiellement à l’origine du déclenchement de nouvelles formations d’étoiles, comme suggéré par des observations du satellite Herschel (Chaty et al. 2012). Enfin, les observations récentes de r-process concomitant à la détection d’une kilonova montrent que la fusion de deux étoiles à neutron est un élément important (voire même majoritaire) de nucléosynthèse dans la Galaxie.



Cette thèse, couvrant divers domaines de l’astrophysique, propose d'étudier comment se forment ces formidables couples d’étoiles massives, dont le rôle est primordial au sein du cycle de la matière, comment ils évoluent, et quel est leur impact sur leur environnement, en se basant sur des observations multi-longueur d’onde (ESO, Gaia…).

L’Univers gravitationnel : à la recherche des progéniteurs d’ondes gravitationnelles

SL-DRF-20-0575

Domaine de recherche : Astrophysique
Laboratoire d'accueil :

Direction d’Astrophysique (DAP)

Laboratoire d’Etudes des Phénomènes Cosmiques de Haute Energie (LEPCHE)

Saclay

Contact :

Sylvain CHATY

Date souhaitée pour le début de la thèse : 01-10-2020

Contact :

Sylvain CHATY
Université de Paris et Institut Universitaire de France - LEPCHE/Laboratoire d’Etudes des Phénomènes Cosmiques de Haute Energie

01 57 27 53 04

Directeur de thèse :

Sylvain CHATY
Université de Paris et Institut Universitaire de France - LEPCHE/Laboratoire d’Etudes des Phénomènes Cosmiques de Haute Energie

01 57 27 53 04

Page perso : www.linkedin.com/in/sylvainchaty

Labo : irfu.cea.fr/dap

Voir aussi : www.apc.univ-paris7.fr/APC_CS

Contexte : La découverte, par l’observatoire LIGO-Virgo le 14 septembre 2015, d’ondes gravitationnelles (OG) issues de la fusion de deux trous noirs de masse stellaire, applaudie par l’ensemble de la communauté scientifique, fut inattendue en terme de sources astrophysiques : deux trous noirs stellaires aussi massifs (~ 30 masses solaires) n’avaient jamais été vus auparavant, bien qu’ils constituent probablement le sommet de l’iceberg. A partir de cette détection, plusieurs questions se sont immédiatement posées : comment de tels trous noirs peuvent-ils se former, et combien y en a-t-il dans notre Univers local et au-delà ’ Puis, la deuxième percée est venue avec la détection d’une kilonova associée à une fusion de deux étoiles à neutrons, le 17 août 2017. D’autres questions surgirent, telles que la nature du résultat d’une telle fusion. Plus généralement, l’une des questions les plus fondamentales, en termes d’astrophysique et de physique, concerne la nature des progéniteurs qui finiront par fusionner. Enfin, nous savons maintenant que de nombreuses fusions de ce type seront détectées par les observatoires OG actuels et futurs, mais nous ne savons pas quel sera le taux exact.



Objets d’étude : Les binaires stellaires hébergeant des astres compacts (en particulier les étoiles à neutrons et les trous noirs) constituent les meilleurs progéniteurs, évoluant jusqu’à fusionner en binaires de trous noirs, d’étoiles à neutrons ou d’étoiles à neutrons et trous noirs, et émettre des OG. L’évolution globale de ces binaires est encore sujette à de nombreuses incertitudes de certains paramètres de l’évolution des binaires, tels que : le "kick" reçu lors de la supernova, les effets de métallicité sur les vents stellaires, la phase d’enveloppe commune, déterminante pour la survie ou non du système binaire, le spin de chaque objet etc.



Objectifs : Pour répondre aux questions d’astrophysique et de physique fondamentale décrites ci-dessus, nous avons besoin d’un cadre commun, rassemblant la connaissance des objets astrophysiques tels que les binaires hébergeant des objets compacts, avec l’expertise scientifique et instrumentale des détecteurs d’ondes gravitationnelles. AIM et APC sont deux laboratoires idéaux pour entreprendre une telle étude à leur interface, offrant : i. une étude approfondie des binaires individuelles, une étude globale de l’ensemble des binaires, et une modélisation de l'évolution des populations binaires, afin de caractériser la nature des progéniteurs de fusion ; et ii. l’expertise des détecteurs OG, la connaissance des détections et une estimation observationnelle des taux de fusion selon la sensibilité du détecteur. Le (la) candidat(e) s’insérera dans le groupe «Rates & Populations » au sein de la collaboration Advanced LIGO – Advanced Virgo.



Description : Au cours de cette thèse, nous modéliserons l’évolution des systèmes binaires en utilisant le code MESA : (http://mesa.sourceforge.net/binary_controls_defaults.html) afin de contraindre les paramètres encore mal connus (kick, métallicité, enveloppe commune, spin, etc). Nous utiliserons les nouvelles observations de binaires d’étoiles massives et de binaires accrétantes (obtenues à l’ESO ou délivrées par le satellite Gaia), pour en déduire des informations sur le mouvement propre –relié au kick–, sur les types spectraux de chacune des étoiles, et sur le fait que les binaires survivent ou non à la phase d’enveloppe commune (les binaires accrétantes contenant une étoile compagnon de faible masse sont vues après cette phase, alors que celles contenant une étoile de grande masse sont vues avant). Nous comparerons ensuite les prédictions des modèles (MESA) aux informations données par les observations (ESO, Gaia), dans le but de contraindre les paramètres mentionnés ci-dessus. L’utilisation de ces modèles, aux paramètres contraints, permettra ensuite de faire évoluer les systèmes jusqu’à la fusion, et d’estimer plus précisément le taux de fusion d’objets compacts (binaires d’étoiles à neutron et/ou de trous noirs). La comparaison de ces taux de fusion aux courbes de sensibilité des détecteurs OG permettra finalement d’ajuster le taux de détection des futurs détecteurs.
Vers une caractérisation 3D des sources étendues en rayons X

SL-DRF-20-0569

Domaine de recherche : Astrophysique
Laboratoire d'accueil :

Direction d’Astrophysique (DAP)

Laboratoire d’Etudes des Phénomènes Cosmiques de Haute Energie (LEPCHE)

Saclay

Contact :

Fabio Acero

Date souhaitée pour le début de la thèse : 01-10-2020

Contact :

Fabio Acero
CEA - DSM/IRFU/SAp/LEPCHE

0169084705

Directeur de thèse :

Fabio Acero
CEA - DSM/IRFU/SAp/LEPCHE

0169084705

Voir aussi : http://github.com/facero/sujets2020

Les données en rayons X obtenues par les satellites en rayons X sont multidimensionnelles par nature. Pour chaque photon la position et l'énergie sont enregistrés. Ce sujet propose de développer de nouvelles méthodes d'analyses multidimensionnelles mêlant apprentissage machine et méthode de séparation de sources. En particulier, nous voulons développer ici un apprentissage pour décomposer les données sur une base de spectres physiques réalistes.

L'objectif scientifique est de pouvoir déconvoluer la structure tri-dimensionelle (x,y,z) et cartographier à petite échelle spatiale les paramètres physiques sous jacents (indice spectral de l'émission synchrotron, densité, température et abondance du gaz chaud) dans les sources étendues telles que les amas de galaxies et les vestiges de supernova. Ces méthodes sont cruciales pour pouvoir pleinement exploiter les données des futures spectro-imageurs en rayons X tels que le X-IFU (satellite Athéna en préparation) dans lequel le CEA est fortement impliqué.

• Astrophysique

 

Retour en haut