Les sujets de thèses

5 sujets /DAp/LCEG

Dernière mise à jour :


• Astrophysique

 

Formation précoce des disques et début de la formation universelle des étoiles, une sonde de l'influence des baryons sombres

SL-DRF-24-0444

Laboratoire d'accueil :

Direction d’Astrophysique (DAP)

Laboratoire de Cosmologie et d’Evolution des Galaxies (LCEG)

Saclay

Contact :

David ELBAZ

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

David ELBAZ
CEA - DRF/IRFU/DAP/LCEG

0169085439

Directeur de thèse :

David ELBAZ
CEA - DRF/IRFU/DAP/LCEG

0169085439

Le télescope spatial James Webb a révélé la présence de galaxies spirales très tôt dans l’histoire de l’univers (jusqu’à des décalages spectraux supérieurs à z=5). L’apparition des disques si tôt est surprenante car il s’agit de structures fragiles et semble renforcer l’idée d’un apport de moment angulaire par l’accrétion de matière intergalactique. Ce phénomène d’accrétion à travers des filaments refroidis pourrait expliquer plusieurs résultats inattendus du James Webb. Il pourrait aussi être à l’origine de la formation d’étoile universelle, dite séculaire, observée dans les galaxies sous la forme d’une corrélation entre taux de formation d’étoiles et masse stellaire (séquence principale de la formation d’étoiles, MS). Ils apporteraient les réservoirs et participeraient à la régulation de la formation d’étoiles. Il s’agit d’un important changement de paradigme dans notre compréhension de l’origine des formes des galaxies et de leur histoire de formation d’étoiles. Au cours de cette thèse, nous disposerons de données du James Webb, d’Euclid et de modèles numériques permettant de tester cette hypothèse. Notons que sans ce type d’explication pour la grande efficacité de formation des galaxies observée par le James Webb, il faudrait invoquer des changements bien plus drastiques qui pourraient ouvrir un nouveau champ. Cette thèse aidera à le déterminer.
Comprendre la formation des bulbes à partir des informations morphologiques et cinématiques du JWST

SL-DRF-24-0383

Domaine de recherche : Astrophysique
Laboratoire d'accueil :

Direction d’Astrophysique (DAP)

Laboratoire de Cosmologie et d’Evolution des Galaxies (LCEG)

Saclay

Contact :

Emanuele DADDI

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Emanuele DADDI
CEA - DRF/IRFU/DAP/LCEG


Directeur de thèse :

Emanuele DADDI
CEA - DRF/IRFU/DAP/LCEG


Les bulbes actuels des galaxies spirales et des galaxies elliptiques contiennent de très vieilles étoiles et on pense qu'ils se sont formés au début de l'Univers. La manière dont cela s'est produit en pratique n'est pas bien comprise: les processus physiques les plus importants en jeu ne sont pas encore clairs. Au cours de la dernière décennie, les preuves de l'existence de galaxies compactes à éclatement d'étoiles se sont multipliées et pourraient être des indices de bulbes pris au moment de leur formation. Plus récemment, grâce aux nouvelles découvertes de notre groupe basées sur le JWST, un certain nombre d'autres résultats déroutants se sont accumulés, actuellement difficiles à expliquer : A) ces galaxies à explosion d'étoiles sont toujours intégrées dans des systèmes plus vastes, semblables à des disques, qui sont moins actifs mais contiennent la majeure partie de la masse stellaire existante, comme s'il n'y avait pas eu de formation de bulbes "nus" ; B) dans certains cas, les disques extérieurs ont en fait cessé de former des étoiles, représentant ainsi des cas d'extinction progressant de l'extérieur vers l'intérieur, inversant le schéma standard plus familier (tel qu'observé dans les spirales locales et la Voie lactée, où le centre est éteint et les périphéries forment des étoiles) ; C) les disques sont souvent fortement déséquilibrés dans leur distribution de masse stellaire, une caractéristique qui devient de plus en plus dominante lorsque l'on regarde les époques antérieures. Cette phénoménologie est actuellement inexpliquée. Elle pourrait être liée à l'activité de fusion, à l'accrétion de gaz ou à des effets de rétroaction. S'il s'agit de bulbes en formation, on ne sait pas comment ils évolueraient dans les bulbes et les galaxies elliptiques actuels. Néanmoins, ces nouvelles observations promettent une percée dans la compréhension de la formation des bulbes si des progrès supplémentaires peuvent être réalisés et si de nouvelles informations sont recueillies. Nous proposons un projet de doctorat dans lequel l'étudiant utilisera les données d'imagerie et de spectroscopie du JWST pour éclairer ces questions. L'imagerie provenant des relevés publics profonds et ultra-profonds qui s'accumulent sera utilisée pour augmenter les statistiques et asseoir sur des bases plus solides les premiers résultats obtenus jusqu'à présent. La spectroscopie du JWST est la clé d'une compréhension détaillée de systèmes spécifiques, fournissant des informations sur la cinématique des noyaux d'étoiles compactes en explosion ainsi que des disques extérieurs : si ces sous-systèmes sont en co-rotation sans perturbations majeures, ils devraient connaître une évolution non violente, liée à l'accrétion de gaz. Au contraire, des sous-systèmes en contre-rotation ou des perturbations cinématiques trahiraient des événements de fusion. Ce type de test n'a pas encore été réalisé. Nous utiliserons une spectroscopie ciblée en partie déjà disponible dans le cadre du projet de diffusion rapide CEERS dont nous sommes membres, dans les grandes archives qui s'accumulent et dans des propositions spécifiques (en attente et à soumettre dans les cycles futurs).
Cosmologie en rayons X par apprentissage profond

SL-DRF-24-0346

Domaine de recherche : Astrophysique
Laboratoire d'accueil :

Direction d’Astrophysique (DAP)

Laboratoire de Cosmologie et d’Evolution des Galaxies (LCEG)

Saclay

Contact :

Marguerite PIERRE

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Marguerite PIERRE
CEA - DRF/IRFU/SAp/LCEG

0169083492

Directeur de thèse :

Marguerite PIERRE
CEA - DRF/IRFU/SAp/LCEG

0169083492

Labo : https://irfu.cea.fr/dap/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=972

Les amas de galaxies sont les entités les plus massives de l’univers.
L’application de l’intelligence artificielle à l’analyse cosmologique de relevés d’amas en rayons X permet d’aborder cette problématique sous un angle totalement novateur. Ce sont les paramètres directement observables (redshift, flux et couleurs X) qui sont utilisés en apprentissage profond sur des simulations hydrodynamiques ; ceci permet d’établir une correspondance implicite avec la distribution de masse sous-jacente. De là, il est possible d’inférer les paramètres cosmologiques, sans calcul explicite de la masse des amas et sans formalisme empirique reliant les propriétés X à la masse.
Le but de la thèse est d’appliquer cette méthode, développée au DAP, au survey XMM-XXL qui est à ce jour le seul échantillon d’amas du satellite XMM avec effets de sélection contrôlés (~ 400 objets). Cette méthode originale constituera, 24 ans après le lancement d’XMM, une première dans la cosmologie observationnelle.
Mesurer la formation des galaxies primordiales massives avec le télescope spatial James Webb (JWST)

SL-DRF-24-0411

Domaine de recherche : Astrophysique
Laboratoire d'accueil :

Direction d’Astrophysique (DAP)

Laboratoire de Cosmologie et d’Evolution des Galaxies (LCEG)

Saclay

Contact :

Benjamin MAGNELLI

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Benjamin MAGNELLI
CEA - DRF/IRFU

0169086825

Directeur de thèse :

Benjamin MAGNELLI
CEA - DRF/IRFU

0169086825

Le télescope spatial James Webb (JWST) révolutionne notre vision du premier milliard d'années après le big bang, en nous permettant de détecter les galaxies primordiales formées par l'effondrement des premières surdensités de l'Univers. Les études initiales des propriétés de ces galaxies, en partie réalisées par notre équipe, ont révélé que leur formation est encore largement incomprise et potentiellement en tension avec le modèle cosmologique standard (LCDM). En effet, ces études ont mis en évidence un excès potentiel de galaxies massives primordiales, impliquant une croissance accélérée de ces galaxies à des efficacités de formation d'étoiles bien au-delà des prédictions des modèles théoriques. Avant d'invoquer des modèles cosmologiques et d'évolution des galaxies radicalement différents, il est néanmoins nécessaire de confirmer ces tensions, qui ne reposent actuellement que sur des mesures très incertaines de la masse stellaire de quelques galaxies.
Cette thèse aura pour objectif de confirmer ou infirmer ces tensions en contraignant pour la première fois de manière solide la masse stellaire d’un large échantillon statistique de galaxies primordiales. Pour ce faire, nous combinerons les données de quatre relevés extragalactiques du JWST avec une approche statistique originale d’empilement d’images nous permettant d’obtenir la masse stellaire moyenne des galaxies primordiales qui sont autrement trop faibles pour être détectées individuellement par le JWST dans la fenêtre critique de l’infrarouge moyen. Ces informations, ainsi que celles obtenues sur leur activité de formation d'étoiles, seront déterminantes pour comprendre la croissance des premières galaxies de l’Univers.
Simulations cosmologiques de la formation des galaxies avec le calcul intensif exascale

SL-DRF-24-0395

Domaine de recherche : Astrophysique
Laboratoire d'accueil :

Direction d’Astrophysique (DAP)

Laboratoire de Cosmologie et d’Evolution des Galaxies (LCEG)

Saclay

Contact :

Camila CORREA

Date souhaitée pour le début de la thèse : 01-09-2024

Contact :

Camila CORREA
CEA - DRF/IRFU/DAp/LCEG

31653850353

Directeur de thèse :

Camila CORREA
CEA - DRF/IRFU/DAp/LCEG

31653850353

Page perso : https://www.camilacorrea.com

Labo : https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=977

Ce projet vise à améliorer la synergie entre les observations astronomiques, les simulations cosmologiques numériques et la modélisation des galaxies. Les futurs instruments tels qu'Euclid, DESI et Rubin LSST, entre autres, permettront des relevés de galaxies à champ large avec des mesures extrêmement précises. La précision accrue des observations exigera cependant des prévisions théoriques robustes des modèles de formation des galaxies pour parvenir à une compréhension approfondie de la physique fondamentale sous-jacente aux mesures cosmologiques.

Pour atteindre cet objectif, les exa-supercalculateurs joueront un rôle clé. Contrairement aux supercalculateurs modernes, qui se composent généralement de milliers de CPU pour la production de simulations de pointe, les exa-supercalculateurs utiliseront une configuration hybride de CPU hôtes avec des accélératrices GPU. Cette configuration permettra d'effectuer jusqu'à 10^18 opérations par seconde. Les exa-supercalculateurs révolutionneront notre capacité à simuler des volumes cosmologiques s'étendant sur 4 gigaparsecs (Gpc) avec 25 billions de particules, les exigences minimales en termes de volume et de résolution nécessaires pour faire des prédictions sur les données d'Euclid.

Cependant, le défi à ce jour réside dans le fait que les logiciels de simulation cosmologique conçus pour les exa-supercalculateurs manquent de modélisation de la formation des galaxies. Des exemples incluent le code HACC-CRKSPH (Habib et al. 2016, Emberson et al. 2019) et PKDGRAV3 (Potter, Stadel & Teyssier 2017), qui ont produit les plus grandes simulations à ce jour, FarPoint (Frontiere et al. 2022), regroupant 1,86 billion de particules dans un volume de 1 Gpc, et Euclid Flagship (Potter, Stadel & Teyssier 2017), présentant 2 billions de particules dans un volume de 3 Gpc, respectivement. Alors que HACC-CRKSPH et PKDGRAV3 ont été développés pour fonctionner sur des supercalculateurs modernes avec accélération GPU, ils manquent de la physique complexe de la formation des galaxies et ne peuvent donc produire que des boîtes cosmologiques basées uniquement sur la gravité.

Le code SWIFT (Schaller et al. 2023) est un effort parallèle qui a produit Flamingo (Schaye et al. 2023), la plus grande simulation intégrant la gravité, l'hydrodynamique et la physique de la formation des galaxies, regroupant 0,3 billion de particules. Cependant, l'inconvénient de SWIFT est qu'il a été principalement conçu pour une utilisation CPU. L'adaptation de SWIFT pour fonctionner sur des GPU modernes nécessitera la refonte complète du code. Un autre exemple concerne les simulations actuelles de la formation des galaxies réalisées à l'Irfu, telles qu'Extreme Horizon (Chabanier et al. 2020), qui ont également atteint leur limite car elles reposent sur des codes basés sur les CPU qui entravent leur extensibilité.

Comprendre les subtilités de la formation des galaxies est essentiel pour interpréter les observations astronomiques. Dans cette quête, le CEA DRF/Irfu est idéalement positionné pour conduire les avancées en astrophysique à l'ère émergente des exascales. Les chercheurs de DAp et DPhP ont déjà entrepris l'analyse de données de haute qualité de la mission Euclid et de DESI. Simultanément, une équipe de DEDIP développe DYABLO (Durocher & Delorme, en préparation), un code robuste de gravité + hydrodynamique spécialement adapté aux exa-supercalculateurs.

Ces dernières années, d'importants investissements ont été orientés vers l'avancement de DYABLO. De nombreux chercheurs de DAp et de DEDIP ont contribué sur divers aspects (de l'hydrodynamique de la physique solaire à l'amélioration des processus d'entrée/sortie) grâce à des subventions collaboratives telles que la subvention PTC-CEA et le projet européen FETHPC IO-SEA. De plus, DYABLO a bénéficié d'interactions avec l'unité de recherche CEA, Maison de la simulation (CEA & CNRS).

Ce projet ambitieux vise à étendre les capacités de DYABLO en intégrant des modules de formation des galaxies en collaboration avec Maxime Delorme. Ces modules comprendront le refroidissement et le chauffage radiatifs du gaz, la formation d'étoiles, l'enrichissement chimique, la perte de masse stellaire, la rétroaction d'énergie, les trous noirs et la rétroaction des noyaux actifs de galaxies. L'objectif ultime est d'améliorer l'analyse des données d'Euclid et de DESI en générant des prévisions de simulation de la formation et de l'évolution des galaxies à l'aide de DYABLO. L'ensemble initial de données impliquera un examen complet de la distribution de la matière et de la distribution des galaxies, en partenariat avec les chercheurs de DAp/LCEG et DAp/CosmoStat.

Cette thèse créera la première version d'un code de formation des galaxies optimisé pour les supercalculateurs à l'échelle exa. Les développements en cours permettront non seulement d'étendre ses capacités, mais aussi d'ouvrir de nouvelles opportunités pour des recherches approfondies, améliorant la synergie entre les observations astronomiques, les simulations cosmologiques numériques et la modélisation des galaxies.

References:
Habib, S., et al., 2016, New Astronomy, Volume 42, p. 49-65.
Emberson, J.D., et al., 2019, The Astrophysical Journal, Volume 877, Issue 2, article id. 85, 17 pp.
Potter, D., Stadel, J., & Teyssier, R., 2017, Computational Astrophysics and Cosmology, Vol. 4, Issue 1, 13 pp.
Frontiere, N., et al., 2023, The Astrophysical Journal Supplement Series, Volume 264, Issue 2, 24 pp.
Schaller, M., et al., 2023, eprint arXiv:2305.13380
Schaye, J., et al., 2023, eprint arXiv:2306.04024
Chabanier, S., et al., 2020, Astronomy & Astrophysics, Volume 643, id. L8, 12 pp.

 

Retour en haut