Un modèle basé sur le concept de mesure quantique constitue une approche nouvelle pour calculer la diffraction. Les prédictions de l'optique ondulatoire et du modèle quantique sont significativement différentes aux grands angles.

Un scientifique de l’Irfu a publié dans la Physical Review A un article qui présente un modèle de diffraction basé sur le concept de mesure quantique [1]. Ce modèle constitue une approche nouvelle car l’amplitude de l’onde diffractée est habituellement calculée par les méthodes classiques de l’optique ondulatoire. Plusieurs effets spécifiques de l’aspect quantique du modèle sont prédits dont trois peuvent faire l’objet de tests expérimentaux : un amortissement typique de l’intensité lumineuse aux grands angles de diffraction, un facteur angulaire différent de celui des théories classiques et un paramètre caractéristique d’un lien entre la polarisation et l’impulsion des photons diffractés. Des expériences réalisées à l’IRAMIS dans les prochains mois permettront d’effectuer la mesure simultanée de l’impulsion et de la polarisation des photons détectés et ainsi de valider ou non le modèle proposé.

Les matériaux supraconducteurs à basse température critique sont largement utilisés dans les aimants à haut-champ mais leur comportement est intimement lié aux déformations qu’ils subissent. Dès lors, des études sur les impacts des efforts sur les structures mécaniques sont indispensables. Le projet SUPRAMITEX participe à l’effort de recherche en utilisant le code parallèle AMITEX-FFTP développé dans le cadre du projet SIMU/MATIX pour réaliser des simulations mécaniques non-linéaires sur des microstructures hétérogènes. Ce travail réalisé a permis de montrer l’intérêt du code AMITEX pour simuler le comportement mécanique de ces composants, à différentes échelles, pour des comportements élastique et élasto-plastique des pour échelles de simulation jusqu’ici irréalisables.

Dans le domaine de l’intelligence artificielle, la concurrence internationale est rude. Alors quand des chercheurs du CEA des instituts Joliot et Irfu tiennent la dragée haute aux start-ups et autres entreprises spécialisées en IA, on ne peut que leur tirer notre chapeau. Récit d’un succès dans le domaine de la reconstruction d’images IRM.

En 2016, l’annonce de la première détection directe d’ondes gravitationnelles a ouvert une nouvelle fenêtre d’observation pour sonder notre univers de manière inédite. L’observatoire spatial LISA (Laser Interferometer Space Antenna) promu par l’ESA (European Space Agency) permettra la détection directe d’ondes gravitationnelles indétectables par les interféromètres terrestres. Son lancement est prévu par l’ESA en 2034 et de nombreux travaux actuels explorent son potentiel scientifique, notamment au travers des LISA Data Challenges visant à exploiter des pseudo-données réalistes. Des chercheurs du DEDIP et du DPhN de l’Irfu ont récemment développé de nouvelles méthodes de détection d’ondes gravitationnelles inspirées de problèmes analogues en traitement d’image appliqué à l’astrophysique. Ces méthodes ont permis de répondre avec succès au dernier LISA Data Challenge.  Ces travaux, publiés dans la revue Physical Review D [1], ouvrent la voie à de nombreuses autres études et sont le fruit d’une approche transverse mêlant physique et traitement du signal. 

Voilà un mur que les White Walkers ne franchiront pas... 

Une collaboration internationale rassemblant l’Irfu (CEA, Université Paris-Saclay), l’Institut d’Astronomie de l’Université d’Hawaï, le LPC (Université Clermont Auvergne), l’IP2I (Université Claude Bernard de Lyon), et le Racah Institute of Physics (Université Hébraïque de Jérusalem), a découvert une immense structure dans la distribution des galaxies, baptisée "Mur du Pôle Sud". 

Grâce à une méthode fondée sur les champs de vitesses des galaxies, cette région du ciel, jusqu'à lors inconnue car masquée par des nuages moléculaires et de poussières situés en avant plan dans notre galaxie, apporte une nouvelle pièce au puzzle de la toile cosmique de notre Univers proche. Cette toile cosmique est constituée de nœuds connectés par des filaments,  séparant des vides. Les galaxies sont entrainées des vides vers les filaments puis vers les attracteurs gravitationnels situés aux nœuds de la toile. Les filaments, pris en sandwich entre des vides, peuvent prendre une forme aplatie pour constituer des murs. 

Le Mur du Pôle Sud a une section rectiligne immense (220 Mpc) aux extrémités desquelles il s'incurve pour épouser la frontière de Laniakea. 

Ces travaux sont publiés dans APJ journal https://doi.org/10.3847/1538-4357/ab9952 

Les trajectoires de 1400 galaxies depuis leurs origines il y a 13 milliards d'années ont été pour la première fois reconstituées, incluant celle de notre galaxie, la Voie Lactée. Cette visualisation réalisée par une équipe de scientifiques de l’Université du Maryland, de l’Université d’Hawaï, de l’Université Hébraïque de Jerusalem et du CEA Université Paris-Saclay (Irfu), a été présentée sous forme interactive dans un article paru le 4 décembre 2017 dans Astrophysical Journal. Alors d'où venons-nous et où allons-nous ?

 

Au cours des 13,8 milliards d'années d'histoire de l'Univers, des forces attractives et répulsives ont agi pour concentrer la matière dans certaines régions et en laisser d'autres de plus en plus vides. Pour la première fois, une cartographie des grandes structures de l’Univers, y compris celles non observables par les méthodes classiques, a été réalisée en étudiant les mouvements de milliers de galaxies. Ces travaux, impliquant l'Irfu et l’Institut de Physique Nucléaire de Lyon sont parus le 10 août 2017 dans The Astrophysical Journal.

Les astronomes du Sloan Digital Sky Survey (SDSS) ont utilisé 15 000 quasars lointains très lumineux pour mesurer la masse des neutrinos. En considérant simultanément les mesures de l'expérience BOSS et celles du fond diffus cosmologique avec les données du satellite Planck de 2013, une approche combinée aboutit à la limite à 0.15 eV, ce qui constitue la meilleure contrainte à ce jour sur la somme des masse des neutrinos. Les chercheurs de l’Irfu ont joué un rôle moteur dans cette étude.

L’expérience BOSS (Baryon Oscillation Spectroscopic Survey), principale composante de la troisième génération des relevés SDSS (Sloan Digital Sky Survey), est la première à utiliser les fabuleux émetteurs que sont les quasars dans le but de cartographier l'hydrogène intergalactique gazeux et de mesurer ainsi la distribution de la matière dans l'univers âgé de 1 à 3 milliards d’années seulement. La sélection des objets à observer est réalisée par des chercheurs de l'institut de recherche sur les lois fondamentale de l'univers (Irfu, CEA). Le catalogue de quasars du relevé BOSS est produit par des chercheurs du laboratoire Astroparticule et Cosmologie (CNRS/CEA/Université Paris Diderot/Observatoire de Paris/CNES) et de l’Institut d’Astrophysique de Paris (CNRS/Université Pierre et Marie Curie).

 

Lorsque la lumière d'un quasar lointain passe à travers l'hydrogène gazeux qui constitue l’essentiel du milieu intergalactique, elle est plus ou moins absorbée selon la densité plus ou moins grande de la région traversée. Le spectre du quasar, quand il est finalement observé sur Terre par le télescope de l’expérience BOSS, comporte ainsi une succession de pics d’absorption correspondant à toutes les régions denses rencontrées sur la ligne de visée. L’analyse de ces absorptions a déjà permis de réaliser une carte de l’univers tel qu’il était il y a environ 11 milliards d’années, avec laquelle les chercheurs ont pu étudier la formation des structures à grande échelle (typiquement la centaine de millions d’années-lumière) et mesurer la vitesse d’expansion de l’univers à cette époque reculée. Dans cette nouvelle publication, l’équipe de l’Irfu s’est concentrée sur des structures beaucoup plus petites, de l’ordre de quelques millions d'années-lumière, soit de la taille d’un amas de galaxies. A cette résolution, nous observons les nuages de gaz sur le point de former des galaxies.

 

 

Ces nouvelles données sont suffisamment précises pour transmettre des informations sur l'un des ingrédients les moins bien compris de l’univers primordial: les neutrinos. De très faible masse, ces particules se déplacent dans l'univers à des vitesses proche de la vitesse de la lumière, et contrairement à la matière ordinaire, elles ne peuvent pas se regrouper pour former des galaxies. Leur présence a un effet sur la distribution des nuages de gaz, en diluant les grumeaux de l’univers primordial à l’origine de ces nuages. Les cartes cosmologiques mesurées par BOSS portent l’empreinte de l’impact des neutrinos sur les « petites » structures de l'univers, nous permettant ainsi de contraindre indirectement la masse des neutrinos.

Le 4 septembre 2014, la revue Nature publie la découverte, par une équipe internationale incluant un ingénieur-chercheur de l‎’‎Irfu, des frontières de notre superamas de galaxies. Comme le montre la visualisation réalisée à l’Irfu, ce superamas, auquel appartient notre galaxie, la Voie lactée, se révèle bien plus vaste que ce que l’on croyait depuis 50 ans.

 

Cette étude, fondée sur la reconstruction et la visualisation des bassins d‎’‎attraction gravitationnelle à partir des vitesses particulières des galaxies spirales, a été menée conjointement par Brent Tully (University of Hawaii), Hélène Courtois (Université de Lyon), Yehuda Hoffman (Hebrew University, Jerusalem), et Daniel Pomarède, ingénieur-chercheur au Laboratoire d‎’‎Ingénierie Logicielle des Applications Scientifiques (Lilas) du Sédi à l‎’‎Irfu.

Dans cette étude, le logiciel de visualisation de données en trois dimensions SDvision, développé au Lilas dans le cadre du projet COAST, a permis de découvrir et de comprendre la structure tridimensionnelle de notre superamas, en reconstruisant et visualisant les lignes de courant le long desquelles se déplacent les galaxies, mettant en évidence un bassin d‎’‎attraction distinct de ceux des superamas voisins. Ce résultat exceptionnel correspond à la première utilisation du logiciel SDvision sur des données observationnelles, l’application ayant été développée à l’origine pour visualiser des données massives de simulation.

La version anglaise du film ‘L’Univers Recalculé’ produit à l’Irfu par l’équipe COAST (projet conjoint SAp/Sedi) a été sélectionnée, avec 16 autres films sur 26 propositions, pour faire partie du ‘scientific visualization showcase’ projeté lors de la conférence SuperComputing 2012 du 10 au 16 novembre à Salt Lake City.

 

Cette sélection  des films a été présentée au Salt Palace Convention Center le mardi 13 novembre aux participants de SC12 ; il s’agit de films sur la visualisation de résultats de simulations numériques issus de calculs Haute Performance dans différents domaines de recherche en physique.
 

SuperComputing est la plus importante manifestation dans le domaine du Calcul Haute Performance ; elle a lieu tous les ans en novembre aux Etats-Unis et réunit des milliers de participants dans un immense espace d’exposition et de conférences. C’est à l’occasion de SC qu’est remise à jour la fameuse liste TOP500 des plus grosses machines parallèles dans le monde.

 

 

Description du film (version française) 
 

Contact Irfu/Sedi :  Bruno Thooris

Le LHC s'apprête à démarrer pour une première période de prise de données de deux ans qui va produire un flux et une quantité de données parmi les plus importants que l'homme ait jamais eu à traiter. Lors de récents tests en situation réelle, la grille de recherche d'Île-de-France (Grif) a répondu aux performances requises en permettant aux physiciens d'accéder aux données reconstruites seulement quatre heures après qu'elles aient été enregistrées au Cern. En 2010, la quantité de données à traiter sera cent fois plus importante. Les équipes de l'Irfu ont montré après ce premier succès qu'elles étaient prêtes pour relever ce défi.

 

Retour en haut