D.Lhuillier - CEA Saclay

* Future measurements on proton and helium 4

* HAPPEx data taking and results

HAPPEx Experiments @ Jlab - Hall A

Parity Violation in Forward Angle Elastic e⁻ Scattering

$$\begin{split} A^{PV} = \begin{bmatrix} -G_F Q^2 \\ \pi \alpha \sqrt{2} \end{bmatrix} \times \mathcal{F} \left(G_{E,M}^{p\gamma}, G_{E,M}^{pZ} \right) \\ \downarrow \end{split}$$

3 sets of form factors: (γp) , (γn) , (Zp)

Proton target:
$$A^{PV} = \left[\frac{-G_FQ^2}{\pi\alpha\sqrt{2}}\right] \times \left\{ (1 - 4\sin^2\theta_W) \right\}$$

$$-arepsilon arepsilon (G_E^p)^2 + au (G_M^p)^2$$

 $-\frac{\varepsilon G_E^p G_E^s + \tau G_M^p G_M^s + \frac{1}{2} (1 - 4\sin^2 \theta_W) \delta G_M^p F_A^s}{\varepsilon (G_E)^2 + \tau (G_M^p)^2} \right]$

$$-\frac{\varepsilon G_E^p G_E^n + \tau G_M^p G_M^n - (1 - 4\sin^2 \theta_W) \delta G_M^p G_A^{(1)}}{\varepsilon (G_E)^2 + \tau (G_M^p)^2}$$

$$arepsilon(G_E^p)^2 + au(G_M^p)^2$$

HAPPEx Kinematics

* Mostly sensitive to electric form factor

- * Axial contribution suppressed
- * Measured combination

$$G_E^s + 0.4G_A^s$$

Forward angle measurement:

$$\mathbf{E} = 3.3 \, \mathrm{GeV}$$

$$\Theta = 12.5 \text{ deg.}$$

$$Q^2 = 0.47 \text{ GeV/c}^2$$

$$A^{PV} \sim -15 \text{ ppm}$$

Rate = 2 Mhz @ 100 µA

Charge

80C 75C 10C

1999: First parity run using strained GaAs cathode

Hall A Collaboration - JLab

Polarized Source

- * Rapid helicity flips
- * First polar state of a pair is random
- * Harmonic of 60 Hz
- * Sign reversal of A^{PV} using insertable $\lambda/2$ plate

HAPPEx ~ $2.5 \ 10^6$ pairs

Pion threshold 20 cm away from elastic evts in focal plane

Signal integrated over helicity pulse:

- No dead time
- HRS magnetic optics clean up the det. Acceptance

Beam parameters helicity correlations

Scale : window-to-window statistical fluctuations $\sigma(A_{pair}) = 3.10^{-3}$

Control of the systematics :

* Window-to-window fluctuations $< \sigma(A_{pair})$

* Electronic noise $<< \sigma(A_{pair})$

Beam Current Fluctuations

HAPPEx data

* Need redundant beam monitors

* CEBAF: high quality beam

Online monitoring of sensitivity to beam parameters helicity correlations

* Photocathode itself provides large analyzing power

* Increased charge and position asymmetries

Dedicated runs at low current using standard HRS equipment

- * Quasi-elastic in target end-caps: 1.5% in flux
- * Rescattering of inelastic events:

Total Correction = 1.2 +/- 0.6 %

Dedicated runs at low current using standard HRS equipment

<Q²> = 0.47 +/- 0.006 GeV/c²

* Main incertainty from reconstruction of the scattering angle

* Consistency check between 4 different methods

Total syst. = 1.2 %

* Moller polarimeter

* Compton polarimeter operational at the end of the HAPPEx run

→ Monitoring of the beam polarization in the running conditions.

Target Density Fluctuations

Run asymmetry residuals (normalized to error)

Data compatible with perfect sign reversal

* GE-GM cancellation ?

- * Strange vector matrix elements are small?
- \bullet : ps and μs predictions extrapolated to Q 2 =0.5 GeV/c 2 using dipole form factors

Next measurements

E/M separation :

Isoscalar nucleus	
* ⁴ He target:	Pure G_E^s
* Proton target:	$G_E^s + 0.08 G_M^s$

- No axial contributions

2.2%
24 Mhz
6.7 ppm
0.1 0 Gev/c ²
6 deg
.He

Projected errors

Improved systematic control

HAPPEx2: σ (A _{paire}) = 350 ppm

Forward scattering, more sensitive to position and angle : 20 ppm/µrd 20 ppm/µm

* Modelisation of beam optics

* Reduction of ADC pedestal noise

Thick Cerenkov detector

* Radiation Hard :

Plates made of fused quartz

* Segmented :

Gain information and control of syst. Adaptable to H and ⁴He kinematics

See A.Vacheret's poster

- * Has already provided 1.4 % total error @4.5 GeV within 40 min Meets the requirement of the ⁴He experiment
- * Unique tool for monitoring and accurate absolute measurement of the beam polarization in Hall A

HAPPEx Results

