20 janvier 2009

AGATA (Advanced Gamma Tracking Array) est un instrument de nouvelle génération pour l'étude des noyaux par spectroscopie gamma. Ce spectromètre se composera de 180 détecteurs de germanium de très grande pureté. La collaboration AGATA rassemble environ 40 instituts européens. L'Irfu y joue un rôle clef dans la définition des programmes de physique, la construction du spectromètre et de l'électronique associée. Les services d'instrumentation de l'Irfu ont proposé pour ce projet une solution innovante pour le refroidissement des détecteurs et ont développé des modules de basse et de haute tension. Une chaîne de validation des détecteurs a été mise en place au sein de l'Irfu.  D'importants jalons de ces développements ont été validés ces derniers mois.

21 janvier 2009

Une gestion efficace des colis de déchets nucléaires est conditionnée par l'identification et la quantification des matières nucléaires qu'ils contiennent. Au CEA des méthodes non destructives de caractérisation de ces colis sont mises au point afin de les classifier et les orienter vers le stockage adéquat. Les mesures passives qui consistent à mesurer les radiations émises naturellement sont insuffisantes car le contenu, nucléaire et autre, du colis joue le rôle d'un blindage. A contrario, l'irradiation par photon pourrait permettre de quantifier et d'identifier le contenu en actinides (éléments dont le numéro atomique est supérieur à 89) d'un colis. Depuis quelques années, une équipe du Service de physique nucléaire de l'Irfu, dans le cadre du projet PhotoNuc, mesure les caractéristiques de l'émission des neutrons et gamma retardés émis par les fragments issus de la fission induite par photon (photofission) des actinides. Ces données sont essentielles à l'optimisation d'un dispositif visant à trier un nombre important de fûts de déchets. Les résultats pour les gamma retardés ont fait l'objet d'une communication à la conférence PHYSOR081 et ont été sélectionnés pour publication rapide dans Annals of Nuclear Energy.  

23 décembre 2009

Le lundi 23 novembre 2009, marque la première collision de faisceaux de particules au sein des grands détecteurs du LHC. ALICE a vu ses premières collisions à une énergie de collision de 900 GeV permettant de vérifier le bon fonctionnement de ces 18 grands détecteurs le constituant. Dès le 27 novembre, avec seulement quelques jours de données, la collaboration a même publié un article confirmant des mesures existantes.

Le groupe de l'Irfu, responsable du bras dimuons, a du attendre des conditions de faisceaux plus stables pour voir leurs détecteurs réagir aux données issues des collisions et le 6 décembre tous les détecteurs gazeux ont pu être mis sous tension. Les traces des premiers muons ont pu être reconstruites avec succès apportant une grande satisfaction à toute l'équipe qui a hâte de reprendre des données pour le redémarrage prévu en février 2010.

28 mai 2009

Le spectromètre à muons du détecteur ALICE1 a enregistré des rayons cosmiques pendant deux semaines fin mars 2009. Le groupe ALICE de Saclay2 s'est beaucoup impliqué dans la conception, la mise au point, la fabrication et l'installation d'une partie des chambres qui constituent ce spectromètre3. Ce test réalisé à l'aide des rayons cosmiques avait pour but de vérifier le bon fonctionnement de la chaîne complète depuis l'acquisition jusqu'à la reconstruction des données.  Au total un million de canaux environ ont été lus par le système d'acquisition et les données ont été enregistrées sur la grille de calcul. Près de 15000 traces ont été reconstruites dans des conditions proches de l'expérience avec du faisceau. Le test cosmique a été un succès. Il a montré que les chambres du spectromètre ont un comportement stable. Il a aussi permis de mettre en évidence certains points faibles de l'appareillage. Les tests se poursuivent actuellement et permettront de procéder à la correction des défauts observés. 

Un test cosmique impliquant tous les détecteurs d'ALICE est prévu au mois d'août, quelques semaines avant les premières injections de faisceau du LHC.

 

La quête d'ALICE:

 

Alice est l'expérience du LHC dédiée à l'étude du Plasma de Quarks et de Gluons (QGP), un état de la matière où les quarks et les gluons, ne sont plus confinés à l'intérieur des protons et neutrons. Cette soupe primordiale aurait existé dans les premières microsecondes de la naissance de l'univers. Au CERN, elle sera produite lors des collisions d'ions plomb à haute énergie. Le spectromètre à muons d'ALICE détectera les muons venant des résonances J/Psi et Upsilon des premiers faisceaux du LHC. La suppression de telles résonances a été annoncée comme une signature du QGP. 

 

Le spectromètre à muons:

Son rôle est de détecter des paires μ+ / μ- issues des désintégrations des résonances J/Psi et Upsilon, signatures les plus prometteuses de la création du plasma quark-gluon. Le spectromètre (figure 1), qui couvre une ouverture angulaire entre 2 et 9 degrès, est constitué : d'un absorbeur, de 5 stations de trajectographie (1-5), avec la troisième station se trouvant à l'intérieur du Dipole chaud, un mur de feret des chambres de déclenchement. Chaque station inclue 2 plans de cathodes faits de damiers de différentes tailles en x et y (différentes granularités).

23 décembre 2009

Le lundi 23 novembre 2009, marque la première collision de faisceaux de particules au sein des grands détecteurs du LHC. ALICE a vu ses premières collisions à une énergie de collision de 900 GeV permettant de vérifier le bon fonctionnement de ces 18 grands détecteurs le constituant. Dès le 27 novembre, avec seulement quelques jours de données, la collaboration a même publié un article confirmant des mesures existantes.

Le groupe de l'Irfu, responsable du bras dimuons, a du attendre des conditions de faisceaux plus stables pour voir leurs détecteurs réagir aux données issues des collisions et le 6 décembre tous les détecteurs gazeux ont pu être mis sous tension. Les traces des premiers muons ont pu être reconstruites avec succès apportant une grande satisfaction à toute l'équipe qui a hâte de reprendre des données pour le redémarrage prévu en février 2010.

09 décembre 2009
réalisation d'un film cryogénique mince d'H2 au Hall 192

En parallèle des développements menés sur l'instrumentation nécessaire à l'exploitation des faisceaux de SPIRAL2, il est nécessaire de produire des cibles d'hydrogène pur pour accroître la pureté et la luminosité par rapport aux cibles actuelles. Le SPhN a proposé de réaliser une cible cryogénique, dont les caractéristiques seront adaptées aux conditions des futures expériences de réactions directes. Il s'agit du projet CHYMENE (Cible d'HYdrogène Mince pour l'Etude des Noyaux Exotiques), qui a pour but de développer une cible pure d'hydrogène solide H2 sans fenêtre qui s'écoulera sous la forme d'un ruban devant le faisceau dans le vide d'une chambre à réaction.

Pour utiliser cette cible avec des faisceaux d'ions lourds de basse énergie, tels qu'on les attend avec le futur dispositif SPIRAL2, son épaisseur est une donnée très importante. Elle doit être faible, inférieure ou égale à 50 µm.

On utilise pour cela une technique d'extrusion, développée par le laboratoire PELIN à Saint-Pétersbourg, dans laquelle une vis sans fin pousse un volume d'hydrogène vers une buse d'extrusion. La forme de la buse définit les caractéristiques géométriques de la cible. Cette technologie doit être adaptée pour fournir une cible mince homogène (épaisseur de 200 à 50 µm) compatible avec les conditions d'utilisation sous vide et sous faisceau.

Un premier test réalisé en juin 2007 à Saint-Pétersbourg a montré qu'une cible d'épaisseur 200 µm pouvait être produite dans des conditions stables, ce qui a constitué une première validation de la méthode.   

 

Retour en haut