24 juin 2011
Premiers résultats d'ALICE pour la production du J/Psi dans les collisions plomb-plomb

Du 23 au 28 mai 2011 s'est tenue à Annecy (Haute Savoie) la dernière édition de la Conférence Quark Matter qui a regroupé 770 participants venus de tous les continents, dans l'organisation de laquelle s'est impliqué le groupe ALICE de l'Irfu. Cette série de conférences, dédiées à la physique du Plasma de Quark-Gluon (QGP), où théoriciens et expérimentateurs se retrouvent pour confronter leur travaux, est une tradition depuis plus de 20 ans. Des résultats venant de prises des données du LHC (CERN) ont été montrés et en particulier ceux venant des premières collisions avec des faisceaux de plomb à une énergie record de 1.38 TeV/nucléon, permettant d'atteindre une énergie de 2.76 TeV pour les collisions nucléon-nucléon, un ordre de grandeur supérieure à celle obtenue avec l'accélérateur RHIC de Brookhaven (USA). Les premiers résultats font état de la formation d'un QGP liquide quasi-parfait très dense, dans la prolongation de ce qui a été observé à RHIC. Au LHC, la température de ce milieu est 30% plus élevée, le volume est deux fois plus grand et la densité d'énergie est trois fois plus importante. Parmi les résultats majeurs on peut citer: le flot de hadrons plus important, la suppression des hadrons à haute impulsion transverse, l'étouffement des jets et la suppression des quarkonia, particules formées d'une paire quark-antiquark charmés. Le groupe ALICE de l'Irfu s'intéresse plus particulièrement à cette dernière thématique.

15 décembre 2011

 

L’hypothèse de l’existence d'un 4ieme neutrino, appelé neutrino stérile, pourrait être testée en détectant les neutrinos classiques émis par les désintégrations d’une source radioactive de quelques grammes de cérium-144. Dans un article publié dans Physical Review Letters, le groupe Double Chooz de l’Irfu propose d’installer une telle source au centre de grands détecteurs comme KamLAND, Borexino, SNO+, ou LENA.

 

Rappel du contexte:

En janvier 2011 le groupe Double Chooz de l’Irfu a publié des résultats surprenants sur le flux d’antineutrinos produits par la fission de l’uranium et du plutonium dans les réacteurs de centrales nucléaires [1]. Une réanalyse des expériences conduites ces trente dernières années auprès de réacteurs montre un déficit de 6% du nombre de neutrinos observés par rapport à ces nouvelles prédictions. C’est l’anomalie des antineutrinos de réacteur [2]. Cette anomalie pourrait s’expliquer par l’existence d’une nouvelle particule, un quatrième neutrino, alors que les physiciens n’en ont pour le moment référencé que trois. Ce neutrino ne serait sensible qu’à la gravitation et échapperait donc aux détecteurs de neutrinos classiques. Pour cette raison il est appelé neutrino stérile.

 

10 novembre 2011

 

Les physiciens de la collaboration Double Chooz, parmi lesquels ceux de l’Irfu/CEA et de l’IN2P3/CNRS, ont observé la disparition d'antineutrinos en provenance du réacteur nucléaire de la centrale de Chooz dans les Ardennes. Les premiers résultats de cette expérience internationale ont été annoncés le 9 novembre lors d'une conférence à Séoul en Corée. Ils apportent un nouvel indice significatif de l'oscillation des neutrinos, cette aptitude qu'ont ces particules de changer de forme dans leur déplacement, et pourraient ouvrir des perspectives pour expliquer pourquoi l’antimatière a disparu de notre Univers.

 

 

Dans la nature, les neutrinos peuvent prendre trois formes possibles, ou  saveurs , suivant qu’ils sont associés à d’autres particules - un électron ou l’un des deux autres leptons , le muon ou le tau - . Au cours de leur déplacement, les neutrinos peuvent changer de saveur  en fonction de la distance parcourue. Ils peuvent ainsi se transformer en neutrinos électronique, muonique ou tauique. On parle de phénomène d’ oscillation .

Le résultat de  Double Chooz  apporte la troisième mesure manquante, appelée encore angle de mélange θ13(theta13), confirmant ainsi la disparition d’antineutrinos électroniques vers d’autres  saveurs .

La mesure de ces trois angles est cruciale pour comprendre la différence entre les oscillations de neutrinos et d’antineutrinos. Cette différence pourrait contribuer à comprendre celle existant entre la matière et l’antimatière de l’Univers et ainsi expliquer pourquoi l’Univers a « basculé » du côté de la matière.

 

"Ce troisème angle de mélange est la pièce manquante de ce mystèrieux puzzle des neutrinos. Sa mesure précise est la clé pour comprendre la nouvelle physique au delà du modèle standard et maintenant nous en sommes tout proche" témoigne Herve de Kerret (CNRS/In2p3) porte parole de la collaboration Double Chooz.

 

04 mars 2011

Le groupe Double Chooz de l’Irfu vient de publier des résultats surprenants sur le flux d’antineutrinos produits par la fission de l’uranium et du plutonium dans les réacteurs de centrales nucléaires. A l’aide d’une meilleure estimation de ce flux, un décalage de 3% par rapport aux prédictions qui ont fait référence depuis 25 ans a été mis en évidence. Si l’on réinterprète avec ce nouveau flux les résultats des expériences d’oscillations de neutrinos effectuées jusqu’à présent auprès des réacteurs, se révèle alors une « anomalie » significative dans l’ensemble des mesures passées. Le manque d’antineutrinos mesuré atteint près de 6%, car la révision du flux théorique vient renforcer l’effet d’un léger déficit présent dans l’ensemble des mesures. L’explication de cette anomalie par l’existence d’une nouvelle particule, un 4e neutrino « stérile », est une hypothèse qui va étonnamment dans le sens d’autres résultats indépendants. Ce 4e neutrino qui ne serait sensible qu’à la gravitation serait à rajouter au bestiaire du modèle standard de la physique des particules. Son existence aurait aussi des conséquences cosmologiques qui devront être confrontées aux observations. Mais la vérification irréfutable de l’existence de cette nouvelle particule passera par des mesures de flux de neutrinos à moins de dix mètres des cœurs de réacteurs. Ceci est à la portée des techniques actuelles des expériences de détection des neutrinos et tout particulièrement de Nucifer, un détecteur qui se prépare à prendre des données auprès du réacteur de recherche Osiris de Saclay.

 

Retour en haut