29 novembre 2010

Des physiciens, ingénieurs et techniciens de l'Irfu mettent au point la prochaine génération de détecteurs de traces de type Micromegas. Les futures expériences de Compass au Cern et de Clas12 au Jefferson Lab apportent de nouvelles contraintes de fonctionnement dont certaines sont telles que les détecteurs actuels ne peuvent les supporter tout en gardant leurs performances. Des tests de détecteurs comportant de nouvelles caractéristiques ont été réalisés sous faisceau au Cern. Les deux objectifs de ces tests ont été atteints : d'une part une réduction des taux de décharges, facteur limitant pour les expériences à haut flux comme Compass et d'autre part la vérification du bon fonctionnement dans des champs magnétiques intenses, nécessité pour les détecteurs gazeux du futur spectromètre Clas12. Plus généralement le développement de la technologie Micromegas est partie intégrante de la stratégie de l'Irfu avec la création récente d'un atelier de fabrication de ces détecteurs.

02 mars 2010

Le LHC s'apprête à démarrer pour une première période de prise de données de deux ans qui va produire un flux et une quantité de données parmi les plus importants que l'homme ait jamais eu à traiter. Lors de récents tests en situation réelle, la grille de recherche d'Île-de-France (Grif) a répondu aux performances requises en permettant aux physiciens d'accéder aux données reconstruites seulement quatre heures après qu'elles aient été enregistrées au Cern. En 2010, la quantité de données à traiter sera cent fois plus importante. Les équipes de l'Irfu ont montré après ce premier succès qu'elles étaient prêtes pour relever ce défi.

02 décembre 2010
Publication des premiers résultats des collisions plomb-plomb

Après presque une année de prises de données en collisions proton-proton, le LHC du CERN a commencé l’injection d’ions de plomb début novembre et a très vite délivré des collisions dès le 8 novembre. L’énergie dans le centre de masse nucléon-nucléon est de 2,76 TeV, environ 10 fois supérieure à celle atteinte précédement au RHIC de Brookhaven (USA). Les premiers résultats d'ALICE ne se sont pas fait attendre.

25 février 2010

Les collaborations Phenix et Star, qui regroupent notamment des physiciens de l'Irfu/CEA et l'IN2P3/CNRS, ont annoncé des découvertes majeures sur la nature du plasma de quarks et de gluons. Ces résultats décisifs pour la compréhension de la matière nucléaire soumise à des conditions extrêmes apportent un éclairage nouveau sur la naissance de l'Univers. Ils ont été publiés dans la revue Physical Review Letters.

02 décembre 2010
Publication des premiers résultats des collisions plomb-plomb

Après presque une année de prises de données en collisions proton-proton, le LHC du CERN a commencé l’injection d’ions de plomb début novembre et a très vite délivré des collisions dès le 8 novembre. L’énergie dans le centre de masse nucléon-nucléon est de 2,76 TeV, environ 10 fois supérieure à celle atteinte précédement au RHIC de Brookhaven (USA). Les premiers résultats d'ALICE ne se sont pas fait attendre.

23 décembre 2010

Double Chooz est une expérience installée auprès du réacteur nucléaire de Chooz, dans les Ardennes françaises, dont le but est d'étudier les oscillations de neutrinos. Après plus de deux ans de construction du détecteur et son remplissage des 237 m3 d'huiles et de liquides scintillant, le premier détecteur de l'expérience Double Chooz est en prise de données depuis le 22 décembre 2010. Après une phase de réglage début 2011 la collaboration partira à la chasses aux neutrinos, pour une première moisson espérée mi-2011.

 

 

Le groupe de l'IRFU, impliquant le SPP (à l'initiative de l'expérience), le SPhN, le SIS, le Sedi, et le Lenac, a joué un rôle majeur dans le pilotage du projet et a contribué de façon significative à la conception, la réalisation, et l'intégration du détecteur:

 

Après avoir joué un rôle majeur dans la conception des détecteurs, l’IRFU a eu en charge la coordination technique de l’ensemble du projet au sein de la collaboration (140 physiciens & ingénieurs dans 8 pays et 35 instituts). Il a assuré également par la présence permanente d’un ingénieur sur le site, la coordination du montage des différents éléments du détecteur. Les dossiers de sécurité nécessaires à une installation de ce type (ICPE) ont été élaborés et suivi en lien avec l’ASN.

 

Des éléments clefs du détecteur ont été conçus par l’IRFU :

  • Deux enceintes acryliques et l’enceinte support des PM, et l'ensemble des cheminées
  • Un système de déploiement de sources de calibration
  • Le système de mesure du nombre de protons du volume de détection

De plus, une contribution importante de l’IRFU a été apportée autour des liquides,

  • que ce soit pour qualifier la compatibilité du liquide de la cible avec les matériaux utilisés,
  • caractériser et tester la stabilité des liquides scintillants,
  • ou bien encore concevoir et réaliser le remplissage des quatre volumes, ainsi qu'un système de thermalisation du détecteur.

Par ailleurs, l’IRFU a conçu et réalisé la salle blanche du laboratoire et a été un acteur majeur de son maintien à un niveau de propreté satisfaisant tout au long du montage.

 

Enfin, l’IRFU a assuré le relevé géodésique du détecteur.

 

contacts:

 

Thierry Lasserre

Christian Veyssière

 

 

  

30 janvier 2010

Une société vosgienne, NEOTEC, a recu le prix de la « réalisation exemplaire » 2009 pour la réalisation de cuves très spéciales, au salon international Midest, en présence du Ministre de l'industrie, Monsieur Christian Estrosi. La réalisation primée fait partie d'un élément important  de l'expérience  Double-Chooz qui mesurera, avant la fin de cette année, des neutrinos émis par le réacteur de la centrale nucléaire de Chooz dans les Ardennes.

 

 

Les enceintes acryliques : une belle mécanique de l'expérience Double-Chooz

 

Spécialisée depuis 1922 dans la vente et la transformation des matières plastiques l'entreprise NOVAPLEST-NEOTEC PLASTIQUE a réalisé pour le CEA quatre enceintes transparentes étanches en Plexiglas issu d'une fabrication spéciale, destinées à un projet de recherche de détection de neutrinos de réacteurs. Cette réalisation a été suivie par l'IRFU qui en a réalisé toute l'étude au sein de son service d'Ingénierie des systèmes (SIS) et du SPP (service de Physique des Particules). L'intégration a été réalisée par une équipe regroupant des personnes du SIS, du Sedi (Le service d'Electronique des Détecteurs et d'Informatique), et du SPP.

14 décembre 2010

Réunis à Bruxelles au sein de Nupecc(1), les chercheurs ont présenté le 9 décembre leur plan à long terme qui vise à préparer l’avenir et conforter la place de premier plan occupée par l’Europe dans le domaine de la physique nucléaire. Le projet Spiral2 à Caen, qui réunit le CNRS/IN2P3(2) et le CEA/DSM(3), fait partie des projets déjà engagés dans le cadre de la stratégie européenne.

 

Retrouvez le plan à long terme de la physique nucléaire sur le site de NUPECC sous différentes formes:

les 200 pages du rapport mais aussi le résumé de 20 pages et une vidéo de 20 minutes.

 

http://www.nupecc.org/index.php?display=lrp2010/main

 

07 octobre 2010

 

 


L’instrument MUSETT1 a détecté ses premiers noyaux lourds lors d’une phase de tests qui a eu lieu au début du mois d’avril 2010 auprès de l’accélérateur du GANIL2 à Caen. MUSETT a été construit dans le but d’identifier les éléments très lourd, les transfermiens, c'est à dire les éléments situés au-delà du fermium (Z=100). Les physiciens nucléaires s’intéressent à ces états extrêmes de la matière pour tester les modèles théoriques décrivant le noyau.  Les premiers résultats de MUSETT sont très satisfaisants, démontrant une très bonne identification des isotopes produits grâce à une méthode originale dite de corrélation génétique. Celle–ci permet d’étiqueter un noyau grâce à la détection de sa décroissance. MUSETT préfigure la détection du futur Super Séparateur Spectromètre S3 dédié aux faisceaux hyper-intenses de SPIRAL23, permettant l’exploration des noyaux les plus lourds.

 

 

15 février 2010

Le projet CHyMENE (Cible d'Hydrogène Mince pour l'Etude des Noyaux Exotiques) a le but ambitieux de produire une cible mince d'hydrogène pur sans conteneur adaptée aux expériences utilisant des faisceaux d'ions lourds de basse énergie prévus avec SPIRAL2.

 

Une équipe de l'Irfu (SPhN et SACM) et de l'Inac/SBT utilisant des techniques cryogéniques vient de produire avec succès un ruban d'hydrogène solide de 100 µm d'épaisseur. Cette cible sera bientôt testée sous faisceau. Une première mondiale.  

 

Ci-dessous: interview de Alain GILLIBERT, qui travaille au projet CHyMENE avec Alexandre OBERTELLI et Emmanuel POLLACO

 

  




 

 

 

Image du début: Ruban d'hydrogène solide H2 extrudé (largeur 10 mm, épaisseur 100 µm), vu au travers du hublot de la chambre à vide (Photo V. Lapoux).

 

29 novembre 2010

Des physiciens, ingénieurs et techniciens de l'Irfu mettent au point la prochaine génération de détecteurs de traces de type Micromegas. Les futures expériences de Compass au Cern et de Clas12 au Jefferson Lab apportent de nouvelles contraintes de fonctionnement dont certaines sont telles que les détecteurs actuels ne peuvent les supporter tout en gardant leurs performances. Des tests de détecteurs comportant de nouvelles caractéristiques ont été réalisés sous faisceau au Cern. Les deux objectifs de ces tests ont été atteints : d'une part une réduction des taux de décharges, facteur limitant pour les expériences à haut flux comme Compass et d'autre part la vérification du bon fonctionnement dans des champs magnétiques intenses, nécessité pour les détecteurs gazeux du futur spectromètre Clas12. Plus généralement le développement de la technologie Micromegas est partie intégrante de la stratégie de l'Irfu avec la création récente d'un atelier de fabrication de ces détecteurs.

06 juillet 2010

Le pion, prédit par Yukawa en 1935 et découvert en 1947, est le premier d'une famille de particules appelées mésons, famille qui n'a pas cessé de s'agrandir depuis.  Les mésons ordinaires sont composés d'un quark et d'un antiquark. La théorie de l'interaction forte prévoit également l'existence de mésons plus complexes, appelés exotiques.  Activement recherchés depuis plus d'une dizaine d'années, leur existence n'a pas encore été formellement prouvée. L'expérience Compass au CERN, collaboration internationale dont fait partie une équipe du Service de physique nucléaire de l'Irfu, a mis en évidence un méson exotique lors d'une expérience préliminaire, gage de belles moissons de particules à venir. Le méson observé par les physiciens de COMPASS a une masse de 1660 MeV/c2 (Millions d'électronVolts/c2).  Sa masse, quoique 12 fois plus grande que celle d'un pion, n'a rien d'extraordinaire. Ce sont ses propriétés quantiques qui ont intrigué les physiciens. Interdites pour les mésons ordinaires, ces propriétés indiquent qu'il s'agit bien d'un méson exotique. 

 

 Ces résultats viennent d'être publiés dans la revue Physical Review Letters (PRL 104, 241803, 2010).

 

Retour en haut