30 novembre 2020

En 2016, l’annonce de la première détection directe d’ondes gravitationnelles a ouvert une nouvelle fenêtre d’observation pour sonder notre univers de manière inédite. L’observatoire spatial LISA (Laser Interferometer Space Antenna) promu par l’ESA (European Space Agency) permettra la détection directe d’ondes gravitationnelles indétectables par les interféromètres terrestres. Son lancement est prévu par l’ESA en 2034 et de nombreux travaux actuels explorent son potentiel scientifique, notamment au travers des LISA Data Challenges visant à exploiter des pseudo-données réalistes. Des chercheurs du DEDIP et du DPhN de l’Irfu ont récemment développé de nouvelles méthodes de détection d’ondes gravitationnelles inspirées de problèmes analogues en traitement d’image appliqué à l’astrophysique. Ces méthodes ont permis de répondre avec succès au dernier LISA Data Challenge.  Ces travaux, publiés dans la revue Physical Review D [1], ouvrent la voie à de nombreuses autres études et sont le fruit d’une approche transverse mêlant physique et traitement du signal. 

21 juillet 2020
La combinaison du multi-détecteur AGATA [à droite]
et du spectromètre VAMOS [à gauche] a permis de
mettre en évidence que l’équilibre entre les deux
contributions était plus complexe qu’envisagé jusqu’ici.                    

La complexité du noyau atomique reflète les multiples composantes de la « force nucléaire » qui lie entre eux les protons et les neutrons. Isoler et caractériser chacune d’entre elles est un véritable défi, tant théorique qu’expérimental, que tentent de relever les études de physique nucléaire. Les isotopes d’étain (noyaux possédant Z=50 protons et un nombre de neutrons N dépendant de l’isotope) servent de référence pour caractériser la compétition entre deux de ces composantes : un terme d’interaction dit d’appariement marquant la tendance qu’ont les protons et neutrons à s’associer par paires et un terme d’interaction dit quadrupolaire caractérisant la tendance naturelle du noyau à se déformer. Aussi distincts soient-ils, ces deux termes d’interaction nucléaire concourent pourtant au même objectif qui est d’organiser de manière optimale les nucléons composant le noyau atomique de manière à minimiser son énergie. Les analyses menées jusqu’ici mettent en évidence une transition entre ces deux composantes à l’approche de l’étain-100, contraignant la modélisation de ce noyau dit « doublement magique ». Avec un nombre identique de protons et de neutrons (Z=N=50), le 100Sn joue un rôle essentiel dans la validation des modèles théoriques décrivant les propriétés des noyaux exotiques.

02 juillet 2020

L'édition 2020 de la conférence sur la physique auprès du Grand collisionneur de hadrons (LHCP) s’est déroulé du 25 au 30 mai 2020. En raison de la pandémie de COVID-19, la conférence, qui devait se tenir initialement à Paris, a eu lieu entièrement en ligne. La collaboration ALICE y a présenté de nouveaux résultats montrant comment les particules charmées – celles qui contiennent des quarks, composants élémentaires de la matière, dits c – peuvent jouer le rôle de « messagers » du plasma de quarks et gluons, qui aurait existé dans l'Univers primordial et qui peut être recréé lors de collisions d'ions lourds dans le Grand Collisionneur de Hadrons (LHC). En étudiant les particules charmées, les scientifiques peuvent en savoir davantage sur les hadrons, particules dans lesquelles les quarks sont liés par des gluons, ainsi que sur le plasma de quarks et gluons, état de la matière dans lequel les quarks et les gluons ne sont pas confinés à l'intérieur des hadrons. Ces nouveaux résultats sont le fruit d’une analyse menée dans le cadre d’une thèse actuellement en cours au DPhN.

08 juin 2020

Après plus de quatre ans de travail de recherche et développement, conception et fabrication, le MFT (Muon Forward Tracker), un nouveau détecteur qui va équiper l’expérience ALICE au LHC, voit sa construction finalisée et en cours de commissioning au Cern. Dans le but de limiter autant que possible la quantité de matière traversée par les particules, la fabrication de ce détecteur a nécessité le développement de nombreuses techniques et procédures innovantes, en particulier dans l’intégration de capteurs silicium sur des circuits hybrides flexibles appelés échelles dont l’Irfu a eu la responsabilité au sein du projet. Pour fabriquer ces 500 échelles du MFT, deux années ont été nécessaires et une très longue séquence d’opérations a fait l’objet de nombreuses études sous la responsabilité de l’équipe de l’Antenne Irfu au Cern. La production de ces échelles vient de se terminer avec succès et c’est donc le temps d’en faire un court bilan.

13 janvier 2020

Quelques microsecondes après le Big Bang, l’Univers serait passé par un état où seuls les constituants les plus élémentaires de la matière y figurent : le plasma de quarks et de gluons (QGP). Le QGP est créé lors de collisions d’ions lourds ultra relativistes. En particulier au LHC (CERN), le QGP s’écoule comme un fluide emportant tout sur son passage. Ainsi, toutes les particules, légères, étranges ou charmées mesurées jusqu’à maintenant apparaissent comme emportées par le même fluide, ce qui témoigne de la force des interactions entre constituants du QGP. La collaboration ALICE au LHC, avec une contribution décisive des équipes de l’Irfu, vient de publier dans la prestigieuse revue Physical Review Letters la première mesure du flot elliptique de l’Υ(1S) (particule composée d’un quark beau et de son antiquark). Cette résonance apparaît comme la première particule au LHC ne se déplaçant pas avec le fluide. Ce résultat pionnier ouvre la voie à des études plus approfondies du QGP.

18 mai 2020

Le DPhN en collaboration avec le DEDIP, la DAM Ile de France (DAM/DIF) et JRC-Geel a développé une chambre à fission compacte servant de cible active au centre du calorimètre gamma de la Collaboration n_TOF. Ce dispositif permet d'étudier les rayons gammas spécifiquement issus des réactions de capture radiative (n,γ), souvent noyés dans un flot d'événements de fission également générateurs de gamma.

15 décembre 2020

L’installation NFS (Neutrons For Science) a reçu les premiers faisceaux de protons délivrés par l’accélérateur linéaire de la nouvelle installation Spiral2 du Ganil en décembre 2019. En marge de la mise en service progressive de l’accélérateur en 2020, de courtes périodes de faisceau ont été mises à profit pour tester avec succès plusieurs éléments de NFS. Les premières expériences sont prévues auprès de l’installation à l’automne 2021.

Un premier faisceau de protons accélérés à 33 MeV a été envoyé en décembre 2019 dans la station d’irradiation de NFS (figure 1), couplée à un système de transfert pneumatique permettant de transporter les échantillons irradiés jusqu’à une station de mesure. Les sections efficaces de production de plusieurs noyaux obtenus par irradiation d’échantillons de fer et de cuivre ont ainsi été mesurées. Les résultats de ce test sont en accord avec les données précédemment publiées. Le dispositif d’irradiation et de mesure, construit et opéré par des physiciens du laboratoire NPI de Rez (République Tchèque), sera utilisé dans le futur pour des mesures inédites de sections efficaces de réaction par activation.

26 octobre 2020

En octobre, le personnel du GANIL a franchi deux étapes très importantes dans le démarrage du nouvel accélérateur linéaire de SPIRAL2 et la mise en route de la salle NFS, la première qui sera ouverte à la science l’an prochain. Petit tour d’horizon avec Navin Alahari directeur du GANIL. 

Il y avait de quoi retenir son souffle. Début octobre, les équipes du LINAC ont réussi à produire et accélérer les premières impulsions de faisceau en configuration nominale, avec une énergie finale de 33 MeV et une intensité instantanée de presque 5mA. En d’autres termes, des paquets de protons ont été densifiés à l’extrême puis injectés et accélérés à la vitesse maximale dans l’accélérateur linéaire. « Cette étape était probablement la plus grosse inconnue de la mise en service, indique Navin Alahari, directeur du GANIL. Nous ne savions pas exactement comment ces paquets très denses de protons, qui ont une forte tendance à se repousser entre eux, allaient se comporter dans l’accélérateur ». Une mauvaise maîtrise du phénomène aurait effectivement des conséquences graves. Elle conduirait immanquablement à des pertes de faisceaux incontrôlées et à l’irradiation intense des éléments de la machine, impactant leur durée de vie.

Environ un an après l’accélération réussie des premiers protons à travers le linac, tout le monde était donc présent dans la salle de contrôle de SPIRAL2 pour assister à ce test primordial. Conduit en n’accélérant qu’un paquet sur 200, c’est-à-dire avec un faisceau d’une puissance moyenne de l’ordre de 1 kW, le test a démontré une très bonne maîtrise des pertes le long de la machine. Indiquant, à la grande satisfaction de tous, une bonne compréhension des phénomènes physiques en jeu durant les processus de formation, d’accélération et de guidage du faisceau. Cette réussite sonne donc comme la confirmation des très bonnes performances du LINAC et laisse espérer des lendemains qui chantent pour les prochaines phases de la mise en service qui consisteront à poursuivre la montée en puissance et à accélérer d’autres types de faisceaux. « Nous allons en particulier pouvoir préparer la prochaine étape importante du LINAC avec la production de deutons, explique Navin Alahari. Nous la testerons l’an prochain, mais maintenant que la machine a montré son excellent fonctionnement avec les protons, ce qui correspond a priori aux conditions les plus difficiles à maîtriser, nous espérons que cela ne sera qu’une formalité ».

 

Retour en haut