Jul 23, 2020

Meteorites are bombarded throughout their journey by cosmic radiation. This cosmic ray exposure (CRE) is a formidable footprint of their history, provided of course that we know how to decipher it. The interaction of cosmic radiation with the atomic nuclei constituting the meteorite will produce so-called cosmogenic isotopes, very often radioactive. Measurements of activities, once the meteorite is found on earth, associated with a model can allow us to go back to its pre-atmospheric size, its CRE ages, its terrestrial age, and even to better understand this cosmic ray flux. This type of model is based on a key ingredient: the elementary cross sections of isotope production. For the first time, these have been provided only by the INCL nuclear reaction code developed at Irfu in the framework of a study of iron meteorites [1], thus increasing the precision of the analyses.

Mar 10, 2020

INCL (Liège intranuclear cascade) is a simulation code known for its ability to model light particle-nucleus interactions. It is used in very various fields, such as proton therapy, neutron sources, radioactive ion beams or ADS's (Accelerator Driven Systems). In order to extend its capabilities in the field of higher energy reactions, in connection with cosmic rays or with the study of hypernuclei, a team of physicists led by Irfu has recently developed a new version of the code involving strange particles. This work was at the heart of a recently defended thesis (2019) and the new possibilities offered by this code were published in early 2020 in the journal Physical Review C [1].

Aug 20, 2020

The spectroscopy of a mendelevium isotope, 251Md composed of 101 protons and 150 neutrons, reveals a surprise: when it rotates, it behaves exactly like a lawrencium isotope made of 103 protons and 152 neutrons. The experiment carried out at the University of Jyväskylä in Finland required the most advanced tools to study these rare and ephemeral nuclei: filtering and identification of the nuclei, gamma ray and electron detection. Is this completely unexpected similarity the result of chance, or is it related to the properties of strong interaction? The investigation continued with the theoreticians to try to understand this singularity. The results have just been published in the journal Physical Review C.

Dec 08, 2020

In 2016, the announcement of the first direct detection of gravitational waves opened a new window of observation to probe our universe in a new way. The LISA (Laser Interferometer Space Antenna) space observatory promoted by ESA (European Space Agency) will allow the direct detection of gravitational waves undetectable by terrestrial interferometers. Its launch is planned by ESA in 2034 and many current works are exploring its scientific potential, in particular through the LISA Data Challenges aimed at exploiting realistic pseudo-data. Researchers from DEDIP and DPHN at IRFU have recently developed new methods for the detection of gravitational waves inspired by similar problems in image processing applied to astrophysics. These methods were successfully used in the last LISA Data Challenge.  This work, published in the journal Physical Review D [1], opens the way to many other studies and is the result of a transverse approach combining physics and signal processing.

Jul 02, 2020

The 2020 edition of the Large Hadron Collider Physics Conference (LHCP) took place from 25 to 30 May 2020. Due to the COVID-19 pandemic, the conference, originally planned to be hosted in Paris, was held entirely online. The ALICE collaboration presented new results showing how charmed particles - those containing quarks, the elementary components of matter, known as c - can act as "messengers" for the plasma of quarks and gluons, which is believed to have existed in the primordial Universe and can be recreated during heavy ion collisions in the Large Hadron Collider (LHC). By studying the charmed particles, scientists can learn more about hadrons, particles in which quarks are bound together by gluons, and about quark-gluon plasma, a state of matter in which quarks and gluons are not confined within hadrons. These new results are the result of an analysis conducted as part of a thesis currently underway at the DPhN.

Jun 08, 2020

After more than four years of research and development, design and manufacturing work, the MFT (Muon Forward Tracker), a new detector that will equip the ALICE experiment at the LHC, has seen its construction finalized and is currently under commissioning at CERN. In order to limit as far as possible the amount of material crossed by the particles, the conception of this detector has required the development of many innovative techniques and procedures, particularly in the integration of silicon sensors on flexible hybrid circuits called ladders, for which Irfu was responsible within the project. It took two years to manufacture the 500 ladders of the MFT, and a very long sequence of operations was the subject of numerous studies under the responsibility of the Irfu Antenna team at CERN. The production of these ladders has just been successfully completed and it is therefore time to make a short assessment


Retour en haut