24 Result(s)

AGATA (Advanced GAmma Tracking Array) is a new generation gamma spectrometer after the Euroball and EXOGAM detectors.   Agata's official website: https://www.agata.org AGATA Web site at GANIL : https://www.ganil-spiral2.eu/scientists/ganil-spiral-2-facilities/instrumentation/agata/ Objectives.
The ALICE experiment is devoted to the study of nuclear matter under extreme conditions of temperature and density. It is specially designed to test the fundamental theory of the strong interaction, Quantum Chromodynamics (QCD), which predicts the existence of this new state of matter, the quark-gluon plasma (QGP).
Atlas is one of the general purpose detectors which started operation in 2008 at the the CERN proton collider, to study the Higgs boson. Goals: Unifying the elementary constituants of matter and their interactions. Atlas is one of the two general purpose detectors installed at the LHC which started operation in 2008.
Project context The BTD project was developed in the framework of experiments aiming at the spectroscopy studies of radioactive nuclei using gamma-radiation and light particles in GANIL, mainly with SPIRAL and then SPIRAL2 beams.
The CHyMENE project (Cible d'Hydrogène Mince pour l'Etude des Noyaux Exotiques - a thin cryogenic target for the studies of exotic nuclei) is part of the instrumentation necessary for the exploitation of the low energy beams (~ 5 to 25 MeV/n), such as SPIRAL2 beams.
Deeply Virtual Compton Scattering experiment at  Jefferson Lab Hall B , with CLAS12, large acceptance spectrometer. Goals: Theoretical concepts as Generalized Parton Distributions (GPD), enable to probe with a dramatic accuracy the nucleon structure, and access the quark confinement in hadrons.
Scientific challenges and project framework   The COCOTIER project (for short-range COrrelations and Isotopic spin at R3B - COrrélations à COurte porTée et spin IsotopiquE à R3B) aims at studying the short-range correlations in the exotic nuclei produced by fragmentation by the radioactive ion beam factory FAIR at GSI.
Scientific goals :   Neutrinos are elementary particles produced abundantly in stars, in the Earth's atmosphere and in the cores of nuclear power plants. In 2006 CEA/IRFU and CNRS/IN2P3 have decided to officially launch the construction of the Double Chooz experiment.
This experiment aims to provide accurate data on actinide neutron-induced fission fragment characteristics (mass distributions, kinetic energy) and neutron multiplicities in the energy range between 500 keV and 20 MeV. Those data are of particular interest for the nuclear community in view of the development of the fast reactor technology.
Objectives While the heaviest element on earth is 238-uranium (with traces of Pu and Np in natural nuclear reactors) whose lifetime is 5 billion years, the last 60 years have seen the synthesis of dozens of new elements in laboratory, with shorter lifetimes.
Hadron electromagnetic form factors parametrize the internal structure of hadrons, the dynamical distribution of magnetization and charge created by the inner constituents.  They are considered fundamental quantities as they are a privileged background for interplay between theory and experiment.
La nature de ces nouvelles fonctions     Des progrès théoriques importants survenus dans les cinq dernières années permettent d'étendre considérablement la notion de distributions de partons dans un nucléon ou un méson.
  Objectives: Megapie (Megawatt pilot experiment) is an international project having as objectives to design, build, test and decomission the first lead-bismuth liquid spallation target functioning under 1 MW deposited power. This target is used as neutron source.
Objectives The objective of the Mini-INCA project is to study minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes.
Scientific Issues and Project Framework The MINOS project aims at performing the spectroscopy of very exotic nuclei produced by fragmentation at the radioactive ion beam facilities such as RIKEN or GSI / FAIR.
A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a gamma-ray array at the target position.
Program: Nuclear matter in extreme states /Nuclear structure /  exotic nuclei Objectives The goals of this experimental program is to study the structure of unstable short-lived very-neutron-rich or neutron-deficient nuclei.
Goal This activity is focused on the study of neutron-induced reactions for nuclear astrophysics (stellar and big bang nucleosynthesis), for nuclear structure (levels density) and for nuclear technologies (current and innovative nuclear reactors, transmutation of nuclear wastes).
Thèmes-programmes: Thématique et contexte du projet In parallel with the experimental activities of the MNM group at DAPNIA/SPhN some fundamental and applied modelling takes place to simulate innovative nuclear systems for nuclear waste transmutation, intensive neutron sources based on spallation and photonuclear reactions, radioactive nuclear beam production scenarios, dismantling of nuclear installations, etc.
The PHENIX experiment is one of the two large experiments located on the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL), in Long Island, United States.
R3B
  Physics and programmes   -         Study of nuclear matter in its extreme states / exotic nuclei -         Physics for nuclear energy / nuclear data and modelling   Goals of the experiment   Study of the structure of nuclei and of the reaction mechanisms by complete reconstruction of the kinematics with stable as well as radioactive beams.
The future superconducting linear accelerator of Spiral2 will provide very high intensity of stable ions beams. They can be used to produce nuclei with very low cross sections, like superheavy elements or neutron deficient nuclei close to the limit of stability.
The high-intensity stable beams of the superconducting linear accelerator of the SPIRAL2 facility at GANIL coupled with the Super Separator Spectrometer (S3) and a high-performance focal-plane spectrometer will open new horizons for the research in the domains of rare nuclei and low cross-section phenomena at the limit of nuclear stability.
Presentation of the project Physics & programmes Spallation reaction study, physics data for nuclear energy Goals of the experiment The measurement in coincidence and in inverse kinematics of the spallation (A+p at 1 GeV per nucleon) reaction in order to study in detail the reaction mechanism.

 

Retour en haut