5 sujets IRFU/DPhN

Dernière mise à jour : 21-01-2021


««

• Nuclear physics

 

Prompt and non-prompt quarkonium production in the Pb-Pb collisions at 5 TeV of the LHC Run 3

SL-DRF-21-0329

Research field : Nuclear physics
Location :

Service de Physique Nucléaire (DPhN)

Laboratoire plasma de quarks et gluons (LQGP) (LQGP)

Saclay

Contact :

Javier CASTILLO

Starting date : 01-10-2021

Contact :

Javier CASTILLO
CEA - DRF/IRFU/DPhN/LQGP

+33 169087255

Thesis supervisor :

Javier CASTILLO
CEA - DRF/IRFU/DPhN/LQGP

+33 169087255

Laboratory link : http://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=500

More : https://alice-collaboration.web.cern.ch

A few micro-seconds after the Big Bang, the Universe was in a quark gluon plasma (QGP) state. Such state is predicted by Quantum Chromodynamics, which is the theory of strong interactions, and should be reached at very high temperature or energy density. Such conditions are reproduced in ultra-relativistic heavy ion collisions at the LHC at CERN.

Among the various QGP observables, the study of hadrons with heavy-flavour quarks (charm c or beauty b) and quarkonia (c-cbar or b-bbar bound states) is particularly important to understand the properties of the QGP.

Quarkonia are rare and heavy particles which are produced in the initial stages of the collision even before the QGP is formed, mainly through gluon-fusion processes, and are therefore ideal probes of the QGP. As they traverse the QGP, the quark/anti-quarks pair will get screened by the many free quarks and gluons of the QGP. Quarkonia will then be suppressed by a colour screening mechanism in the QGP. Since the various quarkonium states have different binding energies, each state will have a different probability of being dissociated. This results in a sequential suppression pattern of the quarkonium states. Additionally, if the initial number of produced quark/anti-quark pairs is large and if heavy quarks do thermalise in the QGP, then new quarkonia could be produced in the QGP by recombination of heavy quarks. This mechanism is known as regeneration. At the LHC, Upsilon (b-bbar) and J/psi (c-cbar) are complementary. The former are thought to be more suited than to address the sequential suppression, while the latter should allow to study possible regeneration mechanisms. In addition, non-prompt J/psi, i.e. from weak decays hadrons containing one valance b quark, give access to the transport properties of b quarks in the QGP. More recently, photoproduction of J/psi has been observed in peripheral Pb-Pb collisions; J/psi are produced from the photon flux of the moving Pb ions mostly at very low transverse momenta. The characterization of these photoproduced quarkonia would allow to better constrain the initial state of the collisions as well as the properties of the QGP.

We propose to study the production of prompt and non-prompt quarkonia Pb-Pb collisions at a center-of-mass energy per nucleon pair (sqrt(sNN)) of 5 TeV at the LHC with the first data of Run 3 (2022-2024). An upgrade of the ALICE apparatus is ongoing with, in particular, the addition of silicon pixel tracker that will complement the ALICE forward spectrometer as well as new readout electronics for the latter. These upgrades will allow us to: Profit from the planned increase in luminosity of the LHC, thus tripling in one year the data collected in the full LHC Run 2 (2015-2018); Separate the prompt and non-prompt contributions thanks to the precise measurement of the quarkonium decay vertex into two muons.

The student will first develop the procedures to separate prompt and non-prompt quarkonia. In doing so, the student will thus contribute to the development of the new software for data reconstructions, simulation, calibration and analysis that the ALICE Collaboration is developing for Runs 3 and 4 of the LHC. Secondly, the student will study the production of prompt and non-prompt quarkonia in terms of production yields and azimuthal anisotropy. These studies could be performed as a function of the centrality of the collision and transverse momentum and rapidity of the quarkonia, for various types of quarkonia. Depending on the progress of the thesis work, these studies, which are a priority for quarkonia produced by the hadronic collision, could be extended to photoproduced quarkonia.
INVESTIGATION OF THE NUCLEAR TWO-PHOTON DECAY IN SWIFT FULLY STRIPPED HEAVY IONS

SL-DRF-21-0139

Research field : Nuclear physics
Location :

Service de Physique Nucléaire (DPhN)

Laboratoire études du noyau atomique (LENA) (LENA)

Saclay

Contact :

Wolfram KORTEN

Starting date : 01-10-2021

Contact :

Wolfram KORTEN
CEA - DRF/IRFU/DPhN/LENA

+33169084272

Thesis supervisor :

Wolfram KORTEN
CEA - DRF/IRFU/DPhN/LENA

+33169084272

Personal web page : https://www.researchgate.net/profile/Wolfram_Korten

Laboratory link : http://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_sstheme.php?id_ast=293

More : https://www.gsi.de/en/work/research/appamml/atomic_physics/experimental_facilities/esr.htm

The nuclear two-photon, or double-gamma decay is a rare decay mode in atomic nuclei whereby a nucleus in an excited state emits two gamma rays simultaneously. Even-even nuclei with a first excited 0+ state are favorable cases to search for a double-gamma decay branch, since the emission of a single gamma ray is strictly forbidden for 0+ ? 0+ transitions by angular momentum conservation. The double-gamma decay still remains a very small decay branch (<1E-4) competing with the dominant (first-order) decay modes of atomic internal-conversion electrons (ICE) or internal positron-electron (e+-e-) pair creation (IPC). Therefore we will make use of a new technique to search for the double-gamma decay in bare (fully-stripped) ions, which are available at the GSI facility in Darmstadt, Germany. The basic idea of our experiment is to produce, select and store exotic nuclei in their excited 0+ state in the GSI storage ring (ESR). For neutral atoms the excited 0+ state is a rather short-lived isomeric state with a lifetime of the order of a few tens to hundreds of nanoseconds. At relativistic energies available at GSI, however, all ions are fully stripped of their atomic electrons and decay by ICE emission is hence not possible. If the state of interest is located below the pair creation threshold the IPC process is not possible either. Consequently, bare nuclei are trapped in a long-lived isomeric state, which can only decay by double-gamma emission to the ground state. The decay of the isomers would be identified by so-called time-resolved Schottky Mass Spectroscopy. This method allows to distinguish the isomer and the ground state state by their (very slightly) different revolution time in the ESR, and to observe the disappearance of the isomer peak in the mass spectrum with a characteristic decay time. An experiment to search for the double-gamma decay in 72Ge and 70Se has already been accepted by the GSI Programme Committee and should be realised in 2021/22.
Continuum QCD approaches and 3D structure of the nucleon

SL-DRF-21-0297

Research field : Nuclear physics
Location :

Service de Physique Nucléaire (DPhN)

Laboratoire structure du nucléon (LSN) (LSN)

Saclay

Contact :

Cédric Mezrag

Hervé Moutarde

Starting date : 01-10-2021

Contact :

Cédric Mezrag
CEA - DRF/IRFU/DPhN/LSN


Thesis supervisor :

Hervé Moutarde
CEA - DRF/IRFU/SPhN/Théorie Hadronique

33 1 69 08 73 88

Laboratory link : http://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=4189

Most of the visible mass of the universe is contained in nucleons. However, the origin of this mass remains mysterious, with the portion from the Higgs mechanism in standard renormalization schemes corresponding to only a few percent of the total mass. The answer is to be found in the dynamics of strong interaction, described by the theory of quantum chromodynamics (QCD) in terms of quarks and gluons. Thus, the interaction between quarks and gluons is responsible for the emergence of known and measured properties of hadrons such as their masses or spins.

There is now a strong theoretical and experimental dynamic to determine the 3D structure of hadrons in terms of quarks and gluons. From a theoretical point of view, the classical tools of quantum field theory, namely perturbative expansion, do not allow the study of the emerging properties of hadrons. The latter are inherently non- disruptive.

The aim of this thesis is to develop and use a non-perturbative formalism based on the Dyson-Schwinger and Bethe-Salpeter equations to determine the 3D structure of hadrons, in particular the nucleon. Different dynamic assumptions will be used to obtain a 3D mapping of the charge, mass and orbital angular momentum effects. To do so, a significant part of the Ph.D. will be dedicated to numerical development and analysis, in order to tackle different inverse problems. A comparison of the results obtained with the experimental data will be carried out in collaboration with the other LSN members.
Testing nuclear interaction at the dripline

SL-DRF-21-0181

Research field : Nuclear physics
Location :

Service de Physique Nucléaire (DPhN)

Laboratoire études du noyau atomique (LENA) (LENA)

Saclay

Contact :

Aldric REVEL

Anna CORSI

Starting date : 01-10-2021

Contact :

Aldric REVEL
CEA - DRF/IRFU/DPhN/LENA


Thesis supervisor :

Anna CORSI
CEA - DRF/IRFU/DPhN/LENA

01 69 08 7554

The exploration of nuclei close to the limit of their existence (called dripline) offers the unique opportunity to observe and study many phenomena not - or insufficiently - predicted by theory such as the appearance of neutron "halos" as well as the emergence of new magic numbers and the disappearance of those observed in nuclei close to stability.

The proposed thesis topic revolves around the study of these emerging phenomena in exotic nuclei (see beyond dripline) via the analysis of data from experiments carried out in RIKEN (Japan) and using the state-of-the-art experimental devices SAMURAI and MINOS which are key for the study of these phenomena.

Towards super heavy elements: new paths for the study of heavy nuclei

SL-DRF-21-0371

Research field : Nuclear physics
Location :

Service de Physique Nucléaire (DPhN)

Laboratoire études du noyau atomique (LENA) (LENA)

Saclay

Contact :

Barbara Sulignano

Starting date : 01-10-2021

Contact :

Barbara Sulignano
CEA - DSM/IRFU/SPhN/LENA

0169 08 42 27

Thesis supervisor :

Barbara Sulignano
CEA - DSM/IRFU/SPhN/LENA

0169 08 42 27

Hunting for super heavy elements one of the most exciting and active topics during the last few years and has already produced new elements such as 113, 115, 117 and 118 in accelerator experiments. All these nuclei can be produced through fusion-evaporation reactions. However their studies are greatly hampered by the extremely low production rates, hence experimental information in this region is very scarce. The high-intensity stable beams of the superconducting linear accelerator of the SPIRAL2 facility at GANIL coupled with the Super Separator Spectrometer (S3) and a high-performance focal-plane spectrometer (SIRIUS) will open new horizons for the research in the domains of such rare nuclei and low cross-section phenomena at the limit of nuclear stability. The student will take an active part in the tests of the whole SIRIUS detector.

Information on the heaviest elements have been obtained up to now via fusion evaporation reactions. It is however well known that the only nuclei one can reach using fusion-evaporation reactions are neutron deficient and moreover in a very limited number (because of the limited number of beam-target combinations). An alternative to fusion-evaporation could be a revolutionary method based on be deep-inelastic collisions. The student will take, therefore, an active part in the new scientific activities of the group having as primary aim the investigation of nuclear structure in the heavy elements employing the new alternative method using multi-nucleon transfer reactions.

 

Retour en haut