18 janvier 2012

L’expérience appelée GBAR (Gravitational Behaviour of Antihydrogen at Rest), vise à observer la chute d’atomes d’antimatière formés à l’aide d’un accélérateur de particules, afin de vérifier s’ils se comportent comme la matière habituelle. Cette mesure est un test important du principe d’équivalence d’Einstein et des symétries fondamentales de l’Univers.

 

L’équipe menée par P.Pérez de l’Irfu/SPP, qui travaille depuis 7 ans à la conception de l’expérience, vient de voir ses efforts couronnés : le mercredi 18 janvier 2012 le Conseil scientifique de l’accélérateur SPS du Cern a décidé de recommander la proposition d’expérience GBAR. Les premières prises de données devraient avoir lieu en 2016.

04 juillet 2012

Les résultats préliminaires obtenus par les expériences Atlas et CMS du Grand Collisionneur de Hadrons (LHC) dans le cadre de la recherche du boson de Higgs indiquent l'existence d'une nouvelle particule dans la région de masse autour de 126 GeV. Il s'agit d'un boson dont les caractéristiques sont compatibles avec celles du célèbre boson de Higgs. Bien que des analyses complémentaires soient nécessaires pour en établir la nature exacte, cette découverte représente une étape cruciale dans la compréhension de l'univers et de la matière.

 

Communiqué de presse du CERN

 

 

"C est une découverte majeure telle que l on en voit que quelques unes par siècle", déclare Philippe Chomaz chef de l'Irfu.

"Le LHC, CMS et ATLAS correspondent à un investissement majeur de la communauté internationale dans lequel l ensemble de l irfu contribue fortement. Je tiens à saluer l extraordinaire investissement de chacun dans cette aventure qui ne fait que commencer avec la découverte de ce nouveau continent inconnu : le secteur du Higgs.

 

24 avril 2012

Lors des conférences de mars 2012, les physiciens du Tevatron et du LHC ont dévoilé les derniers résultats sur leur recherche du bosons de Higgs.
Le domaine encore permis pour la masse du boson de Higgs est maintenant réduit à un intervalle de 10 GeV aux alentours de 120 GeV.
Après les premières analyses de l'ensemble des données enregistrées par le Tevatron, les collaborations CDF et D0 ont trouvé un excès d'événements entre 115 et 135 GeV. Même si cet excès peut être encore interprété comme une fluctuation statistique, il est compatible avec un excès similaire observé autour de 125 GeV par les expériences ATLAS et CMS avec les données du LHC accumulées jusqu'en 2011.

 

 

 

Higgs Wanted

Le boson de Higgs est la pierre angulaire manquante du modèle standard de la physique des particules. Recherché depuis plus de 20 ans, cette particule, si elle existe, permettrait de donner une masse à toutes les autres particules.
Sans quelque chose comme le boson de Higgs qui donne une masse aux particules élémentaires, le monde serait extrêmement différent de ce qu'il est. Par exemple il ne pourrait pas exister d'atome pour former des planètes ou des êtres vivants. 

Découvrir ce boson permettrait, outre l'achèvement de la description du modèle standard, d'obtenir des informations précieuses sur l'existence d'éventuelles particules ou forces au delà du modèle standard.

 

27 novembre 2012

Des astrophysiciens du projet SDSS-III (Sloan Digital Sky Survey), composé en grande partie de chercheurs français, du CEA Irfu et du CNRS In2p3 et INSU, ont effectué la première mesure du taux de l’expansion de l’Univers jeune, âgé de seulement trois milliards d’années sur ces 13,7 milliards, alors que la gravité freinait encore son expansion, avant sa phase actuelle d'expansion accélérée par l'Energie Noire. Ils ont utilisé pour cela une nouvelle technique permettant de dresser une carte en trois dimensions de l’Univers lointain. Ce résultat est en ligne sur arXiv.org.

 

 

 

 


Différentes phases de l'expansion de l'Univers

Hubble et Lemaître ont mis en évidence l’expansion de l’Univers dans les années 1920 en procédant à deux types de mesures pour un même ensemble de galaxies : la distance entre ces galaxies et nous, ainsi que la vitesse de ces galaxies (en utilisant l’effet Doppler sur les raies de leurs spectres).

 

Leurs observations sont à l'origine du modèle "standard" actuel de la cosmologie. Pendant la plupart de l’histoire de l’Univers, cette expansion n’a cessé de ralentir, sous l'effet de la gravitation de matière et de la radiation. Mais depuis cinq milliards d'années, quand l’Univers avait environ 7 milliards d’années, ce comportement s'est inversé : l'expansion s'est mise à accélérer, probablement sous l'effet d'une mystérieuse force répulsive produite par ce qu’on a appelé : "l'énergie sombre". Des expériences en cosmologie ont permis d’observer cette période d'accélération récente, mais pas la décélération primitive de l’Univers. Réussir à mesurer cette décélération exige de remonter aux premiers milliards d’années de son histoire, de remonter loin dans le temps, donc d’observer loin dans l’espace. Pour cela, des galaxies ne suffisent plus : à des distances aussi élevées, leur luminosité devient trop faible.

04 juillet 2012

Les résultats préliminaires obtenus par les expériences Atlas et CMS du Grand Collisionneur de Hadrons (LHC) dans le cadre de la recherche du boson de Higgs indiquent l'existence d'une nouvelle particule dans la région de masse autour de 126 GeV. Il s'agit d'un boson dont les caractéristiques sont compatibles avec celles du célèbre boson de Higgs. Bien que des analyses complémentaires soient nécessaires pour en établir la nature exacte, cette découverte représente une étape cruciale dans la compréhension de l'univers et de la matière.

 

Communiqué de presse du CERN

 

 

"C est une découverte majeure telle que l on en voit que quelques unes par siècle", déclare Philippe Chomaz chef de l'Irfu.

"Le LHC, CMS et ATLAS correspondent à un investissement majeur de la communauté internationale dans lequel l ensemble de l irfu contribue fortement. Je tiens à saluer l extraordinaire investissement de chacun dans cette aventure qui ne fait que commencer avec la découverte de ce nouveau continent inconnu : le secteur du Higgs.

 

24 avril 2012

Lors des conférences de mars 2012, les physiciens du Tevatron et du LHC ont dévoilé les derniers résultats sur leur recherche du bosons de Higgs.
Le domaine encore permis pour la masse du boson de Higgs est maintenant réduit à un intervalle de 10 GeV aux alentours de 120 GeV.
Après les premières analyses de l'ensemble des données enregistrées par le Tevatron, les collaborations CDF et D0 ont trouvé un excès d'événements entre 115 et 135 GeV. Même si cet excès peut être encore interprété comme une fluctuation statistique, il est compatible avec un excès similaire observé autour de 125 GeV par les expériences ATLAS et CMS avec les données du LHC accumulées jusqu'en 2011.

 

 

 

Higgs Wanted

Le boson de Higgs est la pierre angulaire manquante du modèle standard de la physique des particules. Recherché depuis plus de 20 ans, cette particule, si elle existe, permettrait de donner une masse à toutes les autres particules.
Sans quelque chose comme le boson de Higgs qui donne une masse aux particules élémentaires, le monde serait extrêmement différent de ce qu'il est. Par exemple il ne pourrait pas exister d'atome pour former des planètes ou des êtres vivants. 

Découvrir ce boson permettrait, outre l'achèvement de la description du modèle standard, d'obtenir des informations précieuses sur l'existence d'éventuelles particules ou forces au delà du modèle standard.

 

05 juillet 2012

En préparation de la conférence ICHEP 2012 à Melbourne, les physiciens du Tevatron ont présenté les derniers résultats sur leur recherche du boson de Higgs, le 2 juillet. Les analyses mettent en avant un excès d'événements très marqué pour des masses possibles du boson de Higgs entre 115 et 135 GeV dans le canal de désintégration du Higgs en b+anti-b peu accessible au LHC. Cet excès peut soit s'interpréter comme une indication de la présence du boson de Higgs, soit comme une fluctuation statistique du bruit de fond. La précision des résultats, en combinant les deux expériences CDF et D0, se traduit par le fait que ce signal a une chance sur 550 qu’il soit due à une fluctuation statistique. L'excès d'événements du Tevatron est compatible avec la nouvelle particule observée autour de 125 GeV par les expériences ATLAS et CMS au CERN pour l’ouverture de la conférence ICHEP 2012.

24 avril 2012

Lors des conférences de mars 2012, les physiciens du Tevatron et du LHC ont dévoilé les derniers résultats sur leur recherche du bosons de Higgs.
Le domaine encore permis pour la masse du boson de Higgs est maintenant réduit à un intervalle de 10 GeV aux alentours de 120 GeV.
Après les premières analyses de l'ensemble des données enregistrées par le Tevatron, les collaborations CDF et D0 ont trouvé un excès d'événements entre 115 et 135 GeV. Même si cet excès peut être encore interprété comme une fluctuation statistique, il est compatible avec un excès similaire observé autour de 125 GeV par les expériences ATLAS et CMS avec les données du LHC accumulées jusqu'en 2011.

 

 

 

Higgs Wanted

Le boson de Higgs est la pierre angulaire manquante du modèle standard de la physique des particules. Recherché depuis plus de 20 ans, cette particule, si elle existe, permettrait de donner une masse à toutes les autres particules.
Sans quelque chose comme le boson de Higgs qui donne une masse aux particules élémentaires, le monde serait extrêmement différent de ce qu'il est. Par exemple il ne pourrait pas exister d'atome pour former des planètes ou des êtres vivants. 

Découvrir ce boson permettrait, outre l'achèvement de la description du modèle standard, d'obtenir des informations précieuses sur l'existence d'éventuelles particules ou forces au delà du modèle standard.

 

24 avril 2012

 

 

Les dernières analyses de la collaboration D0 au Tevatron ont atteint une précision inégalée comme par exemple 1,8% sur la masse du quark top dans une voie de désintégration particulière avec deux leptons (comme des électrons ou des muons). Les physiciens du groupe D0 du SPP ont publié, dans différentes revues scientifiques, quatre nouvelles mesures confirmant les prédictions du modèle standard. Ces mesures utilisent, pour le moment, la moitié de la statistique accumulée au Tevatron par l’expérience.  Elles se poursuivront jusque fin 2012 et permettront  peut-être de découvrir, une contribution possible de physique au-delà du modèle standard.

 

Le quark top, un cas particulier dans la famille des quarks

Le quark top est une particule unique qui suscite la curiosité des physiciens depuis toujours.  Dès qu’il est créé, il se désintègre alors que les autres quarks une fois créés, se retrouvent immédiatement confinés avec d’autres quarks et des gluons pour former un état lié (appelé hadron). Ce confinement engendre une inconnue supplémentaire dans la reconstruction des processus élémentaires. Ainsi les observables de la physique du quark top sont plus faciles à modéliser. Du fait de sa grande masse, le quark top est également une sonde particulièrement sensible aux phénomènes nouveaux.

 

12 juillet 2012

 

 

 

 

 

La 25e conférence internationale bisannuelle de physique des neutrinos vient de se tenir à Kyoto au Japon au début du mois de juin 2012. Les nouvelles mesures du troisième angle de mélange de la matrice des neutrinos, θ13, ont tenu la vedette et c’est une pluie fertile de résultats expérimentaux qui s’est abattue sur la conférence.

 

 

 

 

 

01 février 2012

Le projet Double-Chooz a produit en fin 2011 le rapport technique de conception de son deuxième détecteur. C’est un document de référence qui définit chacun des lots techniques du détecteur et leurs interfaces. Ce document sous la coordination technique de l’Irfu est le fruit d'un travail des 35 instituts du projet, nécessitant de ce fait des échanges techniques efficaces. Une revue technique les 12 et 13 janvier 2012 à Saclay est venue parachever ce travail.  l’objectif est à présent d’assembler ce détecteur deux fois plus vite que le premier pour qu'il soit opérationnel début 2013.

 

Rappel du contexte de l'expérience

Le projet Double-Chooz, constitué de deux détecteurs identiques, a pour objectif de mesurer la valeur de l’angle de mélange θ13 caractérisant l’oscillation des anti-νe provenant des réacteurs nucléaires situés à la centrale de Chooz dans les Ardennes. Un premier détecteur (dit « lointain » car situé à 1 km des cœurs) a été réalisé et est en fonctionnement depuis plus d’un an maintenant (actualité de décembre 2010 ).

La réalisation d’un deuxième détecteur (dit « proche », à 400 m des cœurs) est nécessaire afin d’améliorer la qualité de la mesure en diminuant les erreurs systématiques.

 

D’autres expériences sont aussi en quête de la valeur de l’angle de mélange θ13. Le projet complémentaire T2K au Japon,  mais aussi deux expériences de conception très similaire à Double-Chooz, celles situées sur le site de Daya Bay (Chine) et RENO (Corée).

"Après la présentation des premiers résultats de Double Chooz en fin d’année 2011 (actualité de novembre 2011), il faut donc faire vite pour maintenir notre place dans la détermination précise de la valeur de θ13." assure Christian Veyssière, chef de projet de l'expérience Double chooz à l'Irfu.

 

05 août 2012

 

 

L’expérience H.E.S.S (High Energy Stereoscopic System) en opération avec 4 télescopes à effet Cherenkov atmosphérique depuis 2004 entre dans une deuxième phase avec le démarrage d'un cinquième télescope, le plus grand construit à ce jour. Cette nouvelle phase va ouvrir une nouvelle fenêtre d’exploration du ciel de l’hémisphère Sud et va permettre de découvrir de nouvelles classes de sources de rayons gamma de hautes énergies (trous noirs supermassifs, pulsars, sursauts gammas,…) ainsi que de sonder les lois de fondamentales de la nature (matière noire, invariance de Lorentz,…). Le groupe de l’IRFU a conçu et développé les mémoires analogiques S.A.M. (Swift Analogue Memory) ainsi qu’un système de déclenchement de niveau 2 pour accéder aux énergies aussi basses qu’une vingtaine de GeV.

 

07 décembre 2012

Le mardi 23 octobre 2012, au musée du quai Branly, le Prix La Recherche 2012 [1] dans la catégorie Physique a été décerné aux membres de l’expérience T2K  (Tokai to Kamioka) [2,3] au Japon, qui étudie les oscillations de neutrinos, pour les premiers résultats publiés en juin 2011 [4]. 

12 juillet 2012

 

 

 

 

 

La 25e conférence internationale bisannuelle de physique des neutrinos vient de se tenir à Kyoto au Japon au début du mois de juin 2012. Les nouvelles mesures du troisième angle de mélange de la matrice des neutrinos, θ13, ont tenu la vedette et c’est une pluie fertile de résultats expérimentaux qui s’est abattue sur la conférence.

 

 

 

 

 

24 avril 2012

L'expérience T2K, à l'arrêt depuis le tremblement de terre de mars 2011, a redémarré sa prise de données à la mi-mars.

 

"C'est un véritable exploit d'avoir pu remettre en fonctionnement un système aussi complexe dans des conditions difficiles et nous devons tous féliciter nos collègues japonais, et en particulier les équipes chargées des opérations des différents accélérateurs de JPARC." déclare Marco Zito, reponsable de l'expérience T2K à l'Irfu.

 

Début janvier, ce fut l'heure du premier faisceau, et mi mars, l'expérience a repris le cours de sa vie en enregistrant à nouveau des données.

 

L'ensemble des accélérateurs avait repris ses activités, à très faible intensité, en décembre 2011. Pour cela, il aura fallu réaligner tous les aimants de l'anneau prinicpal ainsi que corriger la trajectoire du faisceau : le tremblement de terre a en effet provoqué une déformation du bâtiment qui abrite l'accélérateur linéaire.

 

Depuis, l'intensité sur la cible de T2K bat des nouveaux records avec 190 kW atteint le 12 avril. Cela laisse augurer d'une belle moisson de données pour la conférence Neutrino 2012 qui s'ouvrira à Kyoto en juin.

 

Avec les annonces récentes des expériences Daya Bay et RENO, la compétition internationale pour mesurer l'angle de mélange theta_13, et au delà la violation de CP dans les neutrinos, entre dans une nouvelle phase très passionnante.

 

contact Irfu:  Marco Zito

 

 

 

Retour en haut