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ATLAS : General purpose detector at the CERN LHC 
(design: pp collisions at sqrt(s)=14 TeV and L~1034cm-2s-1)
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Requirements for EM calorimeter were mostly driven by low mass Higgs 
boson search: 
• Sustain LHC conditions (radiations, etc..) 
• Work at design luminosity of 1034 cm-2s-1 (25 interactions per bunch 

crossing) 
• Interaction rate ~ 1 GHz with 40 MHz bunch crossing rate 
• ~ 100 kHz L1 trigger rate 

• High granularity to reduce pileup effect and provide good electron and 
photon identification 
• Including photon/pi0 separation to reduce background to H→γγ 

• Fast readout to reduce pileup effect (especially on energy resolution) 
• Good enough energy resolution to achieve good mass resolution and 

sensitivity  to H →γγ 
• Completed by pointing resolution to have robust mass resolution at 

high pileup 
• Sampling term of ~10%/sqrt(E) found adequate
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ATLAS LAr calorimeter

EM calo: Pb+LAr, accordion geometry
EM Barrel:    +- 1.45 in eta
EM EndCap (1.37-3.2 in eta):  1.5-2.4 with high 
granularity in layer 1
182468 channels (173312 in EM calo, 0.2% non 
operational during data taking)
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Absorbers and electrodes ~ parallel to direction of 
particles => "easy" to readout signal from 
electrodes, no crack. 

Zig-Zag angle ("Accordion") to avoid particles 
travelling only in LAr or only in Pb 

Varying angle to keep gap constant as function of 
radius in projective cylindrical geometry 

No cold "active" electronics 

Gap size ~2mm 
Sampling fraction~15-20%
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Why do we care about constant gap size ?

If gap size varies along shower 
axis, response depends on 
fluctuations of longitudinal shower 
development 

(Ar/Total ratio and initial ionization 
current/charge variations) 

With O(3) long. layers, this 
gave ~ 0.65% local constant term 
on energy resolution 
(opening gap prototype in 1991) 
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Granularity in eta (z) direction 
and in depth defined by drawing 
of readout cells on electrodes 

3 layers per electrode:              
HV-readout-HV 

Granularity along phi defined by 
grouping of electrodes 
1024 electrodes, 4 electrodes 
per cell => 2pi/256 cells for 2nd 
layer
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Readout

Low noise electronics on the feedthrough 
to amplify and shape the signal (*3 gains) 
 (Signal is ~15 µA / GeV) 

Analog pipeline to wait for L1 trigger decision 

12-bits ADC 

Data sent by optical link to back-end electronics 
for energy reconstruction and input to HLT and 
readout paths
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Material upstream EM calo is significant  

Conversion reconstruction in the inner 
detector is also an important ingredient 
for analysis using photon 

- to achieve good photon 
reconstruction efficiency 

- to apply dedicated energy 
corrections 

- to apply dedicated identification 
criteria 

Becomes more challenging at high 
pileup 

Material before calorimeter
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timeline
• 1990: start R&D of accordion LAr calorimeter, first test beam of (small) prototypes 
• 1993: LAr accordion calorimeter decided as baseline for ATLAS EM calorimeter 
• 1996: Technical design report 
• 2000-2003: module assembly, test-beam for some of the production modules (-> uniformity 

and linearity studies) 
• 2004: barrel assembly completed 
• 2004: combined test-beam of a "slice" of ATLAS 
• End of 2004: barrel calorimeter lowered in ATLAS pit 
• 2006: full with LAr, commissioning (cosmics) 
• 2008: first beam-splash events 
• 2009: first collision events 
• 2010-2012: run 1   7,8 TeV  25 fb-1 collected. Higgs boson discovery in 2012 
• 2013-2014: LS1 
• 2015-2018: run 2  13 TeV, luminosity ~twice design, 140 fb-1 collected.                                    

30 interactions per bunch crossing in average.  More precise Higgs boson coupling 
measurements, observation of ttH production 

• 2019-2020: LS2, installation of phase 1 upgrade 

• 2021-2023: run 3 
• 2024-2026: LS3, installation of phase 2 upgrade 
• 2026- :  High Luminosity HLC
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Basics recipe for H→ γγ

• Select candidates with two photons 
✦ «easy» to trigger 

• Reject the jet-jet and gamma-jet backgrounds 
✦ Needs rejection O( few 1000’s) against jet background. 
✦ Reject high energy π0 from jets which look almost like photon in the calorimeter∗ 

• Reconstruct invariant mass as precisely as possible  M2 = 2E1.E2(1-cos(θ)) 
✦ Calorimeter energy resolution∗ 
✦ Angular resolution  (i.e need to know production vertex of photon pair)∗ 

• Optimize analysis to improve S/B separation and statistical power 
✦ Additionnal kinematical variables 
✦ Categories 

• Background directly measured from data

∗ depends strongly on EM calorimeter performance
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• Photon (and Electron) identification exploiting the 
calorimeter granularity 

• Position and direction measurement with the calorimeter 

• Photon and electron energy calibration and data-driven 
studies 

• Application to H→γγ analysis from 2012 to now 

• Phase 1 and Phase 2 upgrades

Outline
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Main goal: distinguish direct photons from jets 
including case where jets fragment to «single» π0 

Rely on high transverse granularity: 
Layer 1 dη size 0.0031 in Barrel (~5mm) 
~5 X0 thick 

For a 40 GeV π0, minimal separation ΔR ~0.006 
Apply strict criteria on lateral shower shape in the 
first two layers of the EM calo 

For electrons, backgrounds are b→e, photon 
conversions and charged pion track misidentified as 
electron - similar identification criteria but more use 
of track-based variables

γ candidate

π0 candidate

Photon (and Electron) Identification
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"Shower shape" variables



Data/MC comparison of calorimeter shower shape variables using 
clean Z→ee events

Data shower shape slightly wider than in simulation

Layer 2 Layer 1

For photon identification efficiency computation: 
Take MC, apply shifts to make shower shapes agree with 
data
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Largest cross-talk is L1-L1 in 
eta (capacitive)
Other cross-talks are 
O(0.5-1%), sometime more 
complicated

Measured in electronics 
calibration run and applied to 
MC simulation

Many ingredients enter in simulation of shower shape variable 
- detector geometry 
- Geant4 transport and physic processes 
- simulation of charge collection and readout
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Measurement of photon identification efficiency with data
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3 techniques: 

-Z→ll γ for low Et photons 

-Z→ee with e→photon "transformation" 

-high Et inclusive photons with bkg 
subtraction 

=> ~% level precision on photon 
identification efficiency
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A lot of effort over time to keep the identification efficiency not too 
affected by pileup

19



Application of photon identification to H→γγ
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2 photons with "tight" identification Et >40 GeV typically 
Isolation requirements using calorimeter and inner detector 

Purity measured in data to separate the different components: 
gamma-gamma, gamma-jet, jet-jet

2012 discovery sample 
purity ~ 80%

2015-2017 dataset 
purity ~80%
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• Photon (and Electron) identification exploiting the 
calorimeter granularity 

• Position and direction measurement with the calorimeter 

• Photon and electron energy calibration and data-driven 
studies 

• Application to H→γγ analysis from 2012 to now 

• Phase 1 and Phase 2 upgrades

Outline
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Position and direction measurements

• Position of impact point of showers in the calorimeter in eta and 
phi computed by barycenter of cell energy deposits 

• Corrected for bias due to finite cell size 

• Typical resolutions ~ 0.5 - 1 mm
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In data, apply correction for calorimeter position wrt to  inner detector 

Position measurements also sensitive to deformation of calorimeter 
structure under the influence of gravity ("pear" shape of the inner ring, 
absorber sagging)

2.5mm
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For the mass, we also need the angle between photons 

At the LHC, the transverse interaction point is well 
known (~15 micron spread) while the longitudinal vertex 
position has ~4cm spread 

One needs an event-by-event estimate of the z position 
of the pp collision that produced the photons 
(but there could be up to ~ 60 pp collisions in the same 
bunch crossing)

For unconverted photon, estimate z with 
calorimeter «pointing» 

For early converted photons, use track 

Combine both photons to get best 
estimate of z(vertex)

(not to scale)
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Pointing with data 

check with electrons using track as reference

Compare two photons
(residual systematics structure 

in end-cap, corrected using data later)

Resolution (in barrel) well 
modeled by simulation 
Very little pileup dependence
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Pointing information good 
enough for mass resolution 
(~no impact from angle 
resolution on mass resolution)

For jets and tracks, need "exact" 
primary vertex 
=> combine pointing with track 
informations to find most likely H 
production vertex
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• Photon (and Electron) identification exploiting the 
calorimeter granularity 

• Position and direction measurement with the calorimeter 

• Photon and electron energy calibration and data-driven 
studies 

• Application to H→γγ analysis from 2012 to now 

• Phase 1 and Phase 2 upgrades

Outline
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• Cell energy (from optimal filter reconstruction) from electronics calibration 

• Electron/photon reconstruction from cluster of cells (fixed size or dynamic size) + track 
matching information 

• Electron/photon energy estimate from cluster using regression algorithm trained to correct 
(in one go) for 

• energy lost before calorimeter and outside cluster 
• variation of energy response with impact point in calorimeter 

• Use longitudinal shower shape + position information + track information for converted 
photons 

• Data driven adjustment/checks of input cell energy calibration, linearity  and of material in 
front of the calorimeter 

• Final energy scale adjustment using Z->ee decays, independent of energy, only done as a 
function of eta 

• All corrections are "static" with time thanks to the good stability of the response (with time, 
pileup, etc..) 

=> "predictive" calibration that can be extrapolated to any energy, propagating 
uncertainties on input corrections and studies 

Drawback: most accurate for ~40 GeV Et electrons and not so easy to improve systematic 
uncertainties when moving away from this point.

29



Cell Energy Calibration and Measurement 
from digitized 25-ns spaced (5 or 4) samples

Ecell = FμA→MeV . Mcal/Mphys . R . Σ ai (ADCi - P)

FμA→MeV  : current to energy 
conversion including sampling 

fraction, initial value from Test-Beam

Mcal/Mphys : correct bias from 
calibration / physics difference

R electronics gain (ADC→μA) P pedestal

ai : Optimal Filter Coefficient to estimate 
pulse amplitude

Physics pulse shape prediction and calib/physics difference
extracted from detailed calibration pulse shape analysis + 

drift time knowldege

Correct also for non nominal HV
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• Optimal filter coefficients ai: 
• linear estimator of amplitude from time samples which follow a 

normalized shape gi (assumed to be known) + noise fluctuations 
• Σai gi = 1    => unbiased estimated of amplitude 
• Σai gi = 0  => insensitive to time jitter at first order 
• Σai aj Rij minimum (Rij = correlation of total noise) => minimize 

noise 
• From these constraints ai coefficients can be computed 

• Use 5 (run 1), 4 (run 2) time samples (L1 trigger rate increase) 
• Rij computed assuming pileup with 25-ns bunch spacing and 20 

interactions per crossing during full run 2 
• Changes wrt to optimum ai(pileup) small for pileup range of run 2 
• Keeping same set of ai is better for stability of energy scale

31

De-mystifying optimal filtering 



Test beam experience to learn 
many aspects of pulse 
reconstruction (optimal filter 
coefficients, electronics calibration 
to physics extrapolation) , energy 
estimate procedure, etc..

uniformity

linearity
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Regular electronics calibration run (between LHC fills) to 
monitor stability (and update when needed) of the readout 

electronics
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MC based regression algorithm for e/gamma energy estimate
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For unconverted photons get ~intrinsic 
sampling term of calorimeter resolution 
(10%/sqrt(E) in barrel) 

Worse resolution for converted photons 
due to energy lost before the calorimeter 
and opening of e+e- pair in B-field 

Rely on proper geometry description the 
MC
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Data driven studies and corrections

• Intercalibration of the different longitudinal layers: required for good 
linearity of the calibration and e->photon extrapolation 

• Understanding of the material in front of the calorimeter 
• Material in ID active area ~well known (5%)  
• Not the case for some of the services between the ID and the 

calorimeter. Also tricky to implement in simulation 
• Was studied in details with run 1 data, most conclusion still applies to 

run 2 

• Linearity of the cell energy calibration 

• Pileup and luminosity effects

35



Energy [MeV]
200− 0 200 400 600 800

Ev
en

ts
 / 

10
 M

eV

0

2000

4000

6000

8000

10000

µµ →Z 
Fit Model
Noise component
Landau component

MC, layer 2
 [20,22]∈> µ<

|<0.1 η|

ATLAS Simulation

Energy [MeV]
200− 0 200 400 600 800

Ev
en

ts
 / 

10
 M

eV

0

1000

2000

3000

4000

5000

6000

7000 Data, layer 2
 [20,22]∈> µ<

|<0.1 η|

ATLAS

µµ →Z 
Fit Model
Noise component
Landau component

Energy [MeV]
200− 100− 0 100 200 300 400

Ev
en

ts
 / 

5 
M

eV

0

1000

2000

3000

4000

5000

6000

7000

8000
MC, layer 1

 [20,22]∈> µ<
|<1.8 η1.7<|

µµ →Z 
Fit Model
Noise component
Landau component

ATLAS Simulation

Energy [MeV]
200− 100− 0 100 200 300 400

Ev
en

ts
 / 

5 
M

eV

0

1000

2000

3000

4000

5000

6000

7000

8000

µµ →Z 
Fit Model
Noise component
Landau component

Data, layer 1
 [20,22]∈> µ<
|<1.8  η1.7<|

ATLAS

Relative calibration of layer 1 and layer 2 
Use muons to be insensitive to material in front of calorimeter 
Complication: small S/N especially for data taken with high-pileup in the end-
cap
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Extrapolate to 0 pileup to get "intrinsic" calibration

Result => 
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Example of EMB electrode eta<0.8
near L1-L2 transition

To interpret the muon data/MC as a 
"genuine" calibration, relies on exact 
description in the MC of dE per cell of 
muons 
=> impact of geometry (path length, 
cross-talk effects, etc..

~ 1% systematic 
uncertainty on E1/E2 

calibration
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Procedure for presampler (E0) calibration 
 A bit more tricky 
Use data/MC E0 for electrons: sensitive to both genuine 
presampler calibration and upstream material 
Remove the effect of upstream material by correlating 
with E1/E2
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Linearity of cell energy calibration 

Expect < 0.1% effect from genuine non linearity of electronics but could not exclude 
larger effect in the relative calibration of different readout gains (medium gain vs high 
gain) 
Transition is somewhat in between Z->ee and H->gamma gamma 
Took special data in 2015,2017 and 2018 with lower gain transition threshold so study 
this effect
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Up to 0.4% effect in some regions 
=> taken as systematics

(data taken in 2017)

40



Pileup effects on calorimeter energy measurement
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Bunch structure => no ideal cancellation 
of average pileup=> need correction 
(otherwise up to more than 500 MeV Et 
shifts for run 2 pileup)
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Pileup fluctuations => "noise" in Et 
scales with sqrt(pileup) 
~90 MeV*sqrt(pileup) for photon cluster 
typically 

Difficult to mitigate event-per-event

(total noise per cell)
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Luminosity effects on calorimeter response
Steady flux of particles from pp collisions: 
- heating of the calorimeter through energy deposit => change of energy response 

(-2%/K) 
- steady state current flowing through the HV system (up to ~100 µA per HV line near 

eta ~2.5) leading to voltage reduction between power supply and detector 

=> Effect ~few per mill on the EM endcap calorimeter

energy scale difference 2016-2015
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but overall the energy response is still very stable with pileup and time....
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Final energy scale adjustment with Z→ee
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to match data resolution 

=> this is close to design 0.7% in barrel
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Contribution to constant term from 
non uniformities (vs phi)

In end-cap, +-2% peak-to-peak drift 
time variation 
=> +-0.5% on energy

=> some room to improve a bit the constant term
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=> In agreement within 
systematics

Cross-checks

46



Summary of uncertainties on energy scale and resolution 
(photons)

/E E
σ

0
0.02
0.04
0.06
0.08

0.1
0.12

|=0.3ηUnconverted photons |
ATLAS

 [GeV]TE10 210
σ

 / 
σδ

0

0.2

0.4
Total uncertainty

 ee unc.→Z 
Sampling term unc.
Pile-up unc.
Material unc.

 [GeV]TE
20 40 60 80 100 120 140 160 180

En
er

gy
 s

ca
le

 u
nc

er
ta

in
ty

0.006−

0.004−

0.002−

0

0.002

0.004

0.006

0.008
Total uncertainty

 ee calib. →Z 
 calib. PSα

 µ 1/2α
 e → µ 1/2α

MG/HG gain 
ID material
Material ID to PS
Material PS to Calo

Lateral leakage

Conversion eff.

|=0.3ηUnconverted photons, |
ATLAS

47



• Photon (and Electron) identification exploiting the 
calorimeter granularity 

• Position and direction measurement with the calorimeter 

• Photon and electron energy calibration and data-driven 
studies 

• Application to H→γγ analysis from 2012 to now 

• Phase 1 and Phase 2 upgrades

Outline
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H→γγ analysis

• Start from photon identification + mass measurement 

• Categorize events as function of production properties ( => "STX" 
cross-section) and S/B + mass resolution to enhance sensitivity 

• H→γγ is ~the only decay mode with sensitivity to all Higgs 
boson production modes if enough statistics 

• Alternatively, can also perform inclusive and differential cross-
section with ~no model dependence since signal can be extracted 
with ~ uniform acceptance over a wide range of phase space.
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Higgs Production and decay in the SM
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections
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Gluon fusion cross-section computed 
at NNNLO accuracy 
Uncertainty on theory prediction now at O(5%) level 
About 8 Million Higgs events produced  per 
experiment since LHC start

ggF VBF

VH ttH

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections


All Higgs
events,
|yH | < 2.5

ggF + gg!Z (!qq)H ,

0-jet ggF 0J Fwd, Cen (28, 29)

1-jet,

pH
T < 60 GeV ggF 1J Low (27)

60  pH
T < 120 GeV ggF 1J Med (26)

120  pH
T < 200 GeV ggF 1J High (25)

pH
T > 200 GeV ggF 1J BSM (24)

� 2-jet,

not VBF-like,

pH
T > 200 GeV ggF 2J BSM (20)

pH
T < 60 GeV ggF 2J Low (23)

60  pH
T < 120 GeV ggF 2J Med (22)

120  pH
T < 200 GeV ggF 2J High (21)

VBF-like*,
pH j j

T < 25 GeV

pH j j
T � 25 GeV

qq0!Hqq0

(VBF + V H hadronic),

p j
T < 200 GeV,

VBF-like*,
pH j j

T < 25 GeV VBF low-pH j j
T BDT tight, loose (18, 19)

pH j j
T � 25 GeV VBF high-pH j j

T BDT tight, loose (16, 17)

V H-like† VH had BDT tight, loose (14, 15)

Rest

p j
T > 200 GeV qqH BSM (13)

V H (leptonic decays),
qq̄ ! W H VH lep High, Low (9, 10)

qq̄ ! Z H ,
gg ! Z H

(Z!⌫⌫) VH MET High, Low (11, 12)

(Z!``) VH dilep (8)

top (tt̄H , tHq, tHW )
(had decays) ttH had BDT1-4 (4-7)

(lep decays) ttH lep BDT1-3 (1-3)

bb̄H (merged at all stages with ggF)

BSM-like

BSM-like

ggF, � 2 jet

Reconstruction CategoriesSTXS Regions

*VBF-like: m j j > 400 GeV, |�y j j | > 2.8
†V H-like: 60 < m j j < 120 GeV
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Typical expected mass resolutions in run 2 data

this is typically ~ 10-15% larger than run 1 because of the higher pileup 
At mu~60, pileup noise becomes similar to sampling term for 60 GeV Et 
unconverted photons in the barrel
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2012 discovery plot 80 fb-1 run 2 (2015-2017 data)
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−1 = 13 TeV, 79.8 fbs
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, |yγγ→H    (      )           Total       Stat.     Syst.
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− 0.34

+ 0.37
   (   − 0.38

+ 0.44
  1.13   

VH, leptonic    )− 0.25

+ 0.29
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+ 0.65
   (   − 0.64

+ 0.71
  1.38   

Hqq, BSM−like→ggF + qq  0.23  )±− 0.43

+ 0.45
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  0.76   

<200 GeVj

T
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   (   − 0.40
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  1.40   

ggF, >= 2j    )− 0.21
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<120 GeVH

T
ggF, 1j, 60<p    )− 0.21

+ 0.27

− 0.42

+ 0.43
   (   − 0.47

+ 0.50
  0.89   

<60 GeVH

T
ggF, 1j, 0<p    )− 0.31

+ 0.43
 0.52    ±   ( − 0.61

+ 0.68
  1.23   
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STX cross-section measurements

Source Uncertainty (%)

Fit (stat.) 10

Fit (syst.) 8.3

Photon energy scale & resolution 4.0

Background modeling (spurious signal) 7.3

Correction factor 5.2

Photon isolation e�ciency 4.6

Pileup 1.9

Photon ID e�ciency 1.3

Trigger e�ciency 0.7

Dalitz Decays 0.4

Theoretical modeling

+0.3
�0.4

Diphoton vertex selection 0.1

Photon energy scale & resolution 0.1

Luminosity 2.0

Total 14

Uncertainties on 
inclusive cross-section*BR

(2015-2017 data)
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Differential cross-section measurement

=> measurement still limited 
by stat. uncertainties
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4.9 sigma significance 

sigma*BR=1.59+0.43-0.39 fb 

SM  1.15+0.09-0.12 fb

Looking at the "rare" production mode 
with H→γγ (BR ~0.2%)

(neural network optimized to separate S and B in events 
with/without leptons from top decays)

(2015-2018 data)
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Combined γγ→H

ZZ→H WW→H

bb→H ττ→H

How does it compare to other decay modes ? 

Example interpretation in κV, κF coupling modifiers for H couplings to bosons 
and fermions
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Run-2 Higgs boson mass measurements

58

ATLAS γγ channel 
same categories as 

for coupling 
124.93±0.40 GeV 
(±0.21stat ±0.34syst)

ATLAS 4l channel 
event-by event resolution 

+S/B discriminant 
124.79±0.37 GeV

combined ATLAS run1+run2 
124.97±0.24 GeV (±0.19stat ±0.13syst) 

Syst. uncertainties mainly from photon energy scale



Systematic uncertainties on H→γγ mass measurement

Source Systematic uncertainty on m��
H [MeV]

EM calorimeter cell non-linearity ±180

EM calorimeter layer calibration ±170

Non-ID material ±120

ID material ±110

Lateral shower shape ±110

Z ! ee calibration ±80

Conversion reconstruction ±50

Background model ±50

Selection of the diphoton production vertex ±40

Resolution ±20

Signal model ±20

ATLAS CMS

(run 2)

(run 1)
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• Photon (and Electron) identification exploiting the 
calorimeter granularity 

• Position and direction measurement with the calorimeter 

• Photon and electron energy calibration and data-driven 
studies 

• Application to H->gamma gamma analysis from 2012 to 
now 

• Phase 1 and Phase 2 upgrades

Outline
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Phase 1 upgrade of LAr trigger output
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61



Phase 2 upgrade of LAr readout
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to information provided by new readout 
+ more optimized filters (i.e it is like 
having a pileup of 75) + some 
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Prospects for Higgs coupling studies 
and HH production 

H→γγ gives precise measurement for 5 
main H production processes 

For HH, bb γγ is one 
of the most sensitive channel

(assume ~ same performance as in run 2)
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Conclusions

• Performance of LAr EM ATLAS Calorimeter consistent with 
expectations and allowed good sensitivity for H→γγ 

• Although some aspects turned out to be a bit more involved than 
expected and required precise data-driven calibration corrections 

• Good stability of the response with time and luminosity (although 
small effects start to be visible) 

• The calorimeter performance will still allow good sensitivity to 
H→γγ decays in the context of the HL-LHC program 

• But better mitigation of pileup effect on the energy resolution 
would be beneficial.
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