\ Software
-% University of / \ Sustainability

B BRISTOL T

New approaches

to high-level Em
partlclg physics HEE
analysis

. CEA Saclay, France
= b.krikler@cern.ch 9th December 2019

Y @benkrikler

Challenges facing our field

Python as a solution

Columnar Analysis

Analysis Description

OUtI_i ne . Languages: FAST-HEP

Disclaimers:
This is a very broad topic:
need a whole conference
Some personal opinions:
| welcome any counter-opinions!
Might not be completely new
Analysis = Final stages of processing

Three
challenges

facing our
field

Future data volumes: HL-LHC

e Peak luminosity =—Integrated luminosity

6.0E+34 — : — : — T IR — 1 3500
5.0E+34 f--t-ctoo-poabad b b 4900
5 i N
i - 2500 &2
g BEERE T . i > +18 years:| x22
. £
~ r (%]
- 2000 ©
£ i £
2 3.0E+34 -t WG OW oot i £
> B =)
T - 1500 =
o} b : oo
é 2.0E434 {---i---b-feated Ll le 'g
I i e - 1000 @0
3 o O X
= ol | £ +11 years: | x8
1.0E+34 Bty 4409090 kit 009090 kel 09090900 L S s e iR S BN ==y
B RERE BEpCCUTAENE EEE EEEE
el e \4
i TS T — e
0.0E+00 e [| L — —— 0 Now “150 fb""

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Year

https://Ihc-commissioning.web.cern.ch/lhc-commissioning/schedule/images/optimistic-nominal-19.png

Future data

volumes:
HL-LHC

HSF Roadmap: DOI:
10.1007/s41781-018-0018-8

From CMS: “User data”
30% of disk space,
“Analysis” 40% of CPU

From ATLAS: Current model
cannot work on future
resources

CPU seconds by Type

1600 | mmm Prompt Data
. Non-Prompt Data
1400 { mmm |HC MC
B HL-LHC MC
1200 4{ ™= Analysis
» 1000 4
*
o
Q 800
I
=
600
400 4
200 A
0_
~ © o o — o~ m < n o ~] o o
— - - o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ m
o o o o o o o o o o o o o o
o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~
'a' = T T LI R T T T T L—
g r '
2 5000— - =
o r ATLAS Preliminary -]
o L]
o 4000~ *
© [= Resource needs]
o C (2017 Computing model)]
@ C Flat bud 1
L — get model]
> 3000 (+15%/year) N
(=) L]
2000/ , , -
Run 2 "~ Run3 T Run4 -
&]
1000

\!Illll\

ol P O N R B
2018 2020 2022 2024 2026

Data on disk by tier

Runl & 2
Ops space
5000 T
GENSIM
4000 AOD
MINIAOD
B USER
@ 3000 A
) I
2000 A
1000
=
ol = = = = = - - B . |
A 2 9 0 DN DD o o AN O L
SIS I I A I A A A VI A A s
O S S S S S S S S S
8 T T | T T T T T T | T T T I
S L i
S 100 "
o . ATLAS Preliminary §
= L - i
2 8o]
~ - = Resource needs e
';‘ C (2017 Computing model) .]
8 60~ — Flatbudget model]
5 - (+20%l/year) 1
o - o
2 B i
o 40— —
-] Run 2 .
) i
20—
=== L

Pl R R I
2018 2020 2022 2024

N B
2026 2028

Year

https://link.springer.com/article/10.1007%2Fs41781-018-0018-8
https://link.springer.com/article/10.1007%2Fs41781-018-0018-8

Processing trends

42 Years of Microprocessor Trend Data

7 I | 1 I A
10 _ “ ‘) Trans'stors
P I T N R 428 | (housands
| a AAd, A‘)
10° Aaas, e Single-Thread
; A 3 B Performance
N N R S VTl L. | (SpecINT x 10°)
A2 g Intfm v
: AL 478 Frequency (MHz
103 ——— ,,,,,,,,,,,,,,,,,,,,, AAAA‘..G;ﬂlE ,,,,,,, ,,,,,,,, n__ |. S Y()
A [dr] I SRS Typical Power
1l S T P TRE Y %Y (Watts)
A ..= e v' "v vv 3 * 2 "
' S - " yyf_.v;;.} B e T epatt Number of
LI - ® vy b 7 Logical Cores
&om T i snos®
1()0 —‘ * X * B 000 e SN Wem oo —
| | | |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Moore’s law faltering:
predictions for early 2020s

Manufacturers abandoning
“transistors per chip” metric
already

Operating frequency fixed
(“Dennard Scaling” has stopped)

Seeing more cores per chip: need
more parallelisation

Minh Huynh, CHEP 2019

Squa re Ki '.Ometer Array The Square Kilometre Array Computing

@ sDP headline design numbers*

g
e ~800 GByte/s INGEST (in total), from Central Signal Processor
B/
5
e Data set up to 15 PBytes
CWEEIEl o 100PBytes total distributed buffer
ily store Y
-
e 250 PFLOPS total peak
e 10% efficiency assumed

> 600 PB per year for around 50 years

(up to) 2 PetaByte per day of Science Data Products => 30 Exabytes of data
= “Exascale computing”

Preserve
and ship

*all numbers subject to change (Totals for both SKA-Low and SKA-Mid SDP)

https://indico.cern.ch/event/773049/contributions/3581362/attachments/1937710/3211780/SKA_SDP_SRC_CHEP_Huynh_upload.pdf

Time to code
IS @ major factor in
time to insight

Bugs and Reproducibility: Not specific to

particle physics!

EE Q Sign in News Sport Weather Shop Earth Travel Mo}

NEWS

Home Video World US&Canada UK Business Tech Science Magazine Ente

Most scientists 'can't replicate studies by
their peers'

By Tom Feilden
Science correspondent, Today programme

(@ 22 February 2017 Science & Environment

Dec. 2006 DOI: 10.1126/science.314.5807.1856

SCIENTIFIC PUBLISHING

Until recently, Geoffrey Chang’s career was on
a trajectory most young scientists only dream
about. In 1999, at the age of 28, the protein

ly position at

"Willoughby-Hoye" Scripts from 2014 Nature Protocols hinstitute in

year, in a cer-
ng received a

A Scientist's Nightmare: Software
Problem Leads to Five Retractions

2001 Science paper, which described the struc-
ture of a protein called MsbA, isolated from the
bacterium Escherichia coli. MsbA belongs to a
huge and ancient family of molecules that use
energy from adenosine triphosphate to trans-
port molecules across cell membranes. These
so-called ABC transporters perform many

rd

8¢t 172.4 (Incorrect)
.a) .\r.\-’\ .
Y ¥ N

Ubuntu16
-»
. Q = Same |Windows10
Gaussian —® 5c1173.2 Different
P .

N N O Output Files| " Calculated
HO ot Chemical

Mavericks Shifts!

9 12 801 1732 s

Oct. 2019 cl o

DOI:10.1021/acs.orglett.9b03216

8cq 172.7 (Incorrect)

http://dx.doi.org/10.1021/acs.orglett.9b03216
https://science.sciencemag.org/content/314/5807/1856/tab-pdf

We will soon be
inundated with
data!

We will soon be
inundated with
data!

Increases in
computing
resources won't
match growth
in our data

We will soon be
inundated with
data!

Increases in
computing
resources won't
match growth
in our data

Physicists first,
developers
second: writing
code is slow,
error-prone, hard
to reproduce

. /

sicists first,

ror-prone, hard
to reproduce

/

Too much data:

What does “Big
data” do?

Few resources:

Use them more
efficiently!

Good code is
tough:

Adopt easier
languages and
open source

practices
NS /

Python for
Particle Physics

Why Python .

Interoperability with other languages

for SCientiﬁC o Bindings to C++, fortran, etc
research?

o We can continue using existing tools (if wanted)

e Perfect for exploratory work
o Nocompiling
o Little boilerplate code

o E.g. Jupyter notebooks (though this is no longer
python-only)

e Package ecosystem

o “Batteriesincluded” so standard library provides many

functions: argparse, globbing, regular expressions, URL
requests, math

Package manager gives access to huge community-driven
ecosystem

o “Open-source” by default

16

https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science

Jake
VanderPlas:
PyCon 2017

Python's Scientific Stack

IPI[yl:

’ NumPy J.U pyter
PYLE

IPython - @gthon
2 mgtmﬁa

https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science

Jake
VanderPlas:
PyCon 2017

Python's Scientific Stack

& matplotlib

pandaS}%uw

+,l + e 3 N ;"",I

https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science

Jake
VanderPlas:
PyCon 2017

‘i S
6

Statistics in Python

https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science

Jake
VanderPlas:
PyCon 2017

(and

many,
many
more)

astropy

l‘Stati:z:t{ism Ption . @ %Iﬁgg;{}mgge
< matplotlib
PyMC

pandas w i\

t = Tit +p; ey Giif E

https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science

T h e r i Se Of Pyt h o n Python has topped most programming

language rankings for a few years

Worldwide, Python is the most popular language, Python grew the most

in the last 5 years (19.0%) and Java lost the most (-6.9%) Growth of major programming languages
— Java Based on Stack Overflow question views in World Bank high-income countries
—— Python
—— CiC++
10% —R Y .--Fav\}gggrim
—— Matlab %
‘java
— Perl
9%
£
1% |5
b
”
2
2005 2010 2015 2 6
In France, Python is the most popular language, Python grew the most in gé’ p
the last 5 years (11.8%) and Java lost the most (-0.9%) = gis . Bl O I e
— Java %
. - x Tt- ot
Python aoe 3%
—— CI/C++
10%
0%
1%
2012 2014 2016 2018

Time

2005 2010 2015

PYPL index, Dec. 2019: based on web searches
for tutorials on a given language

Stack Overflow queries: Since 2017
Python has been most popular

Why Python

e Bigdata analysis outside of particle

for high-level physics not in C++ these days (and even less
particle in ROOT):

- o It's primarily in Python
phySIC_S o = more useful for students after a PhD
analySIS? o And we can use industry-standard tools with

little extra work = free personpower

e |nparticular, machine learning
o 291 Python ML libraries vs 59 C++

https://github.com/josephmisiti/awesome-machine-learning

22

https://github.com/josephmisiti/awesome-machine-learning

This is not a new message

. . . . On CMS: most users’ code outside
Easily th | A h
asily the dominant language in Astrophysics of CMSSW is now Python

0.30;

Fortran
DL 1.0
Matlab

0.20 Python

GitHub users who forked CMSSW

mm C/C++
B Python
[- Jupyter
(unknown)
mm (other)
1 mmm HTML/CSS/IS
mm Java

o
©

o
o

mm TeX/LaTeX
. Go

0.4 mmm VHDL/Verilog
. R

B Fortran
B Matlab

T = julia

mmm Mathematica

Percent of Publications

fraction of non-fork repositories

=4
N

2000 2002 2004 2006 2008 2010 2012 2014 2016
Year of Publication 0.0

https://qist.qithub.com/jakevdp/f75c09e43320290ffb
edbca43f9fd917

Jan 2011
Jan 2012
Jan 2013
Jan 2014

Jan 2010
May 2010
May 2011
Sep 2011
May 2012
Sep 2012
May 2013
Sep 2013
May 2014
Sep 2014
Jan 2015
May 2015
Sep 2015
Jan 2016
May 2016
Sep 2016
Jan 2017
May 2017
Sep 2017
Jan 2018
May 2018
Sep 2018
Jan 2019
May 2019
Sep 2019

Analysis by Jim Pivarski

https://gist.github.com/jakevdp/f75c09e43320290ffbedbca43f9fd917
https://gist.github.com/jakevdp/f75c09e43320290ffbedbca43f9fd917

Full experiment stack: XenoniaT

DAQ, trigger, reco
and analysis code
all in python

Chris Tunnel for
XenonlT,
PyHEP2018

https://zenodo.org
/record/1418513

N

<
N
\'o)
O N

Data Event
scausion™] reconpract [*

- Software trigger (first) ’ spé?)?(tas,;tkaig(lé:?nn)‘py’

- MongoDB NoSQL
- Pickle output - ROOT/HDF5
- Github managed

Pure Python supercharged with numba just-in-time (JIT)

- Jupyter

- Pandas

- Share notebooks
- Matplotlib

- SKlearn

https://zenodo.org/record/1418513
https://zenodo.org/record/1418513

Want more efficient computing..
..but “isn't Python slow?”

Sort of:
e |Interpreted not compiled
e Global Interpreter Lock: standard interpreted not multi-threaded
e Dynamically typed: attribute look-up more involved
e Primitive types use relatively large

But:

e Python can now be Just in time compiled (e.g. Numba)
e New interpreters on their way (e.g. PyPy)

And, crucially, there are other ways of doing things....

Columnar
Analysis

How do | say:

“He’s as cool as a

cucumber”
in french ?

“ a froid comme
un concombre”

X

“Je suis d'un calme \/
olympien”

which is a long way to say:

to get good results when going
from C++ to Python change
how you think, not just the
words

Numpy

Manipulate arrays of data in one go using high-level interface

numpy

pX = numpy.random.normal(Q,
py = numpy.random.normal(@,

Pure python loop over px and py

at = [l
i range(len(px)):

pt.append(numpy.sqrt(px[il*+2 + py[i]*%2))

O(N) python instructions

Numpy

Manipulate arrays of data in one go using high-level interface

numpy

pX = numpy.random.normal(@, 100, size=1
0} numpy.random.normal(@, 100, size=1_0¢

Pure python loop over px and py Using numpy array operations:
0t . [] pt py ;)

i range(len(px)):

numpy.sqrt (pxs**2

pt.append(numpy.sqrt(px[il*+2 + py[i]*%2))

O(1) python instructions
O(N) heavily optimised instructions

O(N) python instructions

Numpy

Manipulate arrays of data in one go using high-level interface

'NumPy

numpy

00,4 numpy. random.normal(0,
py = numpy.random.normal(®,

Pure python loop over px and py Using numpy array operations:
Aires ||
i range(len(px)):
pt.append(numpy.sqrt(px[i]l+*2 + py[i]l**2))

pt = numpy.sqrt(px**2

O(1) python instructions

O(N) python instructions O(N) heavily optimised instructions

Numpy operations are: Single Instructlon Multlple Data (SIMD)
selected = mass[(pt > 1000 2

Numpy (2)

A high-level interface to low-level routines:
e Uses vectorized programming in CPU for efficiency
e Supports multi-dimensional arrays

Numpy (2)

A high-level interface to low-level routines:
e Uses vectorized programming in CPU for efficiency
e Supports multi-dimensional arrays

CuPy speedup over NumPy (Quoted from RAPIDS Al)

But this iS python: o0 I Array Size 800 MB [Array Size 8 MB
e Dynamic nature of language =
g > H S CuPy
e Package ecosystem i | Y4
e = Cupy:Sameuser codecanrunonGPUs - i fe i Ny [l ' I 1
e Seealso PyYHEADTAIL e y L | |
& v*‘"’f ’ & d & $
& &

https://indico.cern.ch/event/833895/contributions/3577801/attachments/1927448/3191144/oeftiger_gpus_in_python_static.pdf

Numpy (2)

A high-level interface to low-level routines:
e Uses vectorized programming in CPU for efficiency
e Supports multi-dimensional arrays

CuPy speedup over NumPy (Quoted from RAPIDS Al)

I Array Size 800 MB Array Size 8 MB

-
A
. _a®
5\
SO
Y
e CUPY
/2]
oy
I Y 7
A o > L o Q S
R Y
> > <K*
& Q&

N

But this is python:
e Dynamic nature of language |

Speedup
N
S

e Package ecosystem
e = Cupy: Same user code can run on GPUs -
e Seealso PyHEADTAIL e

& S

»
< © » o
> &

Difficulties for HEP: v
e Gettingdatafrom ROOT files into such arrays without a for-loop
e Ourdatais often more structured than simple arrays

https://indico.cern.ch/event/833895/contributions/3577801/attachments/1927448/3191144/oeftiger_gpus_in_python_static.pdf

Filling a ROOT Tree in ROOT w. event loop

Pseudo-code (not python or c++) Builds events that look like:

Class Event:
Int id Event #1
Enum type . .
Vector<Float> pulse_amplitudes id type amplitudes

0 NER M 2 3 1 | 88

Function WriteTree():
TFile file(“outfile”)
TTree tree(...)

Event an_event Event #2
tree.Branch(“event”, &an_event)

id type amplitudes

For each event:

an_event.id = event number 1 MERM 7 13

an_event.type = some event type

For each pulse:

an_event.pulse_amplitudes.append(some value) Event #3

tree.Fill() id type amplitudes

tree.Write()

2 HNR M 2 34 1

.. Which on disk ROOT's split mode makes

Tree

Event #1 amplitudes
id type amplitudes id type cres values

0 MER M 2 3 1 | 88 0 ER 4 2

3

Event #2 1 ER 2 1

id type amplitudes » 2 NR 3 88

1 MER[7 |13 7

13

Event #3 2

id type amplitudes 34

2 HNR M1 2 34 1 1

ROOT file splitting

Tree
Doesn’t work for complex objects: e.g. vectors of vectors of floats | amplitudes
in each event id type ises values

: . 0 ER 4 2

Improves compression on disk 3

1 ER 2

Is why SetBranchStatus speeds up reading back data: only read 1
the branches you want 2 NR 3 88
7
The on disk layout of split branches is a set of contiguous arrays 13
e Read all data for a branch directly into a numpy array 5
34

1

e Uproot = micro pythonic ROOT
o Does one thing: Read (and now write) ROOT files in
python
o Efficient TTree handling: baskets of data on disk copied
into numpy array directly
o About 2 years old -- one of the most important packages
for particle physics with python

pandas

e Uproot can now write trees as well as read them
- Tparg’ift:b o Currently limited to writing single values per event
o Vectors of values per event expected soon

@
(=)
©
e
]
>
©
(=)

£
>
o
£
>
©

b

o

]
>

3

)

©

S
[%)
=

o)

.=
a

\‘ 10—\’% ’LQ\'% “10\9 10—_9 10\9
e o R e®

e After this: uproot will be maintenance only, no
other major developments planned

But how to make “"numpy arrays” for variables

with different lengths in each event? 4o

https://github.com/scikit-hep/uproot

Jagged Arrays

n

L
Jagged Array Jagged Array as ':h
internals a user sees it P——
starts stops values #1[2 3 1 88 140
120
0 4 2 #2| 7 13
4 6 ° #3| 2 34 1 100
1
6 9 88
Something like a 2D numpy - 60
7
array L 40
13 PRy ==
2 E.g. array.max() gives the - |l —4
34 largest value in each event — 0 ;‘.:H'H.
1 jet index jet index

Jagged Arrays

For example, find the momentum of the most forward-going

jetin each event:
140

pt = Jet_pt[numpy.abs(Jet_eta).argmax()]

120

100
Break it down:
e numpy.abs(Jet eta)= absolute eta of every jet in
every event - 60
e numpy.abs(Jet eta).argmax()= index of jet with - 40
largest absolute eta for each event. Number between [50 g m—
0 and Njet n, | = R
e Jet pt[numpy.abs(Jet _eta).argmax()]= ptofthe '« L,
jet with the largest absolute eta for each event, now a Sl o

simple 1D array

Implements the concept of jagged arrays
o Broadcasting, masking, reducing

Methods to manipulate these without a python

for loop: very quick operations
o Internally using numpy

Version 1.0 will be released in next few months:

o Rewrite the internals

o Tidyup the interface

o Letother packages interpret awkward arrays easily
(numba, numexpr)

43

https://github.com/scikit-hep/awkward-array

Coffea -
Column
Object
Framework
for Effective

Analysis

2
7

coffea executor

ROOT files map N reduce Histograms

Parquet files — =—) —P Event lists
coffea.processor

Fermilab project to build an analysis framework on top of
awkward array and uproot

Separation of “user code” and “executors”
e User writes a Processor to do the analysis
e Executor runs this on different distributed job systems,
e.g.
o Local multiprocessing, Parsl or Dask (batch systems),
Spark cluster

Coffea achieved 1 to 3 MHz event processing rates

e Using Spark cluster on same site as data at Fermilab
44

PyHEP: Building
a community for
Python in HEP

The success of Python for astronomy is partly due to the
Astropy project

scikit-hep

Uproot and Awkward-array exist within scikit-hep project

Many other packages on there:
e Particle: Python interface to PDG

from particle import PDGID print(pid.info()) From a PDG ID
N
pid = PDGID(211) lé Ng:: Particle.from pdgid(211)
i J 0.0 N
<PDGID: 211> 5 ° L
s 0
PDGID(99999999) z None
abspid 211
<PDGID: 99999999 (is_valid= charge 1.0
http://scikit-hep.org/
https://github.com/scikit-hep/ e Validation, Particle Decays, Statistics

46

http://scikit-hep.org/
https://github.com/scikit-hep/

Number of Events

1fb~! (13 TeV)

3 QCDinVv

B Zqq

3 Zcc

S zbb

3 waq

E Wcs

[sandwich
Stat. Unc.

80 100 120 140 160 180 200
Soft-drop mass [GeV]

V5 =6TeV

- wjets
- gcd
e Data

TR
E 4t -.'. 3 o “t."l..'.’d'u'm‘-'.‘.."..d;’.o a-.o

ty

60 70 80 920 100 110 120
Di-muon Mass, My, [GeVic?]

Particle Physics loves histograms!

But matplotlib is a little tricky with pre-binned
data

Survey on plotting needs:

Stacked histograms
Good error bars
Ratios of 1D plots
Simple “COLZ” option
Consistent plot styling

Mpl-hep package should become associated
with matplotlib (spoken with matplotlib devs)

47

Flttl ng Many presentations on fitting and statistics

Using TensorFlow as a backend:

e /fit-- focussed on unbinned fits, adapting deep
learning techniques for model fitting
Z]_ e PyHF --store the entire likelihood on HEPData

2 free parameters 9 free parameters
-e- RooFit » 10° _e- RooFit »
1027 _g- zitcpu o- Zfitcpy
-e- Zzfit CPU nograd P K @~ zfit CPU nograd >
-e- Zfit GPU . i» - zfit GPU S e
/ ; o
,’/I’ 102 '//.,
s $ o // — ’,/ 4
; ;
g 10 / s o i
o e Vv 0 SOl
a From zfit S e 2 A
) I/ ’//,/, ()] e "-/ ’I f‘,
£ o /” g 10! .___-.___=_.‘___’_:'_'___r 2 —3—, &
;
= 1004 4 [. =g
. - .
differentiable il alP L
‘g' H £ LA 10° 4 &
———— e o [
IkellhOOdS 10714 ‘;;;;‘:::;E‘::::*/ -~
T T T T T T '2 '3 '4 IS IG '7
T T T iy g gy 10 10 10 10 10 10

Number of events Number of events

Lo L B

The PyHEP workshop
(O sy @ python

Institute SOFTWARE FOUNDATION

& . AN\ T1S
Science & Technolo @)}
@ Facilities Council & hep

nstitute for Research & Innovation
in Software for High Energy Physics

Building a community of Python users and
developers within particle physics

55 people for 2.5 days at Cosener’s House in
Abingdon

Second in series, first at CHEP ‘18 (Sofia, Bulgaria)

Indico page: https://indico.cern.ch/e/PyHEP2019

3rd edition: July 2020 in Austin, Texas alongside
SciPy2020

https://indico.cern.ch/e/PyHEP2019
https://www.scipy2020.scipy.org/

Analysis
description
languages

Is Python
“high-level”
enough?

A large fraction of LHC analyses involve only a few steps:
Define new variables

Cut on events

Fill histograms

Fit from these histograms

51

Is Python
“high-level”
enough?

A large fraction of LHC analyses involve only a few steps:
e Define new variables
e Cutonevents
e Fill histograms
e Fitfrom these histograms

Why not encapsulate these into a “Domain Specific
Language”?

e Fewer lines of user code, fewer bugs

e Easiertoshare around

e Fully abstracts the “what” from the “how”

52

Is Python
“high-level”
enough?

A large fraction of LHC analyses involve only a few steps:
Define new variables

Cut on events

Fill histograms

Fit from these histograms

Why not encapsulate these into a “Domain Specific
Language”?

e Fewer lines of user code, fewer bugs

e Easiertoshare around

e Fully abstracts the “what” from the “how”

Several different attempts to build an ADL:
e LINQ (Gordon Watts et al)
e NAIL (Andrew Rizzi)
e FAST-HEP (this talk)
e Dedicated workshop at Fermilab last May:
https://indico.cern.ch/event/769263/

53

https://indico.cern.ch/event/769263/contributions/3406076/attachments/1839508/3016560/2019-05-07_-_Analysis_Languages.pdf
https://indico.cern.ch/event/769263/contributions/3413006/attachments/1840145/3016759/NAIL_Project_Natural_Analysis_Implementation_Language_1.pdf
https://indico.cern.ch/event/769263/

Analysis versus analysis tools

Processing system

Plots

Tables

e Separation of “the analysis” from the “the processing system”
e The main product of an analysis should be the repository

Your analysis repository is your analysis

Processing system

What datasets do
you need?

What do you How do you want Plots

. . want to do with to present these : Tables
What is their this data? results? |

analysis-specific
meta-data?

Its contents will change as: For free, in a repository:
e You design the analysis e History of analysis evolution
e Yougetnew /updateddata e Continuous integration and validation

Declarative
programming

Declarative languages the user says WHAT, the
interpretation decides HOW

User gives up flow control:
o Cannot do: “Loop over each event, add this to
that if something is true, etc”

Allows:
o More concise description
Fewer bugs

O
o Easier toreproduce and share
o Optimisation behind the scenes

56

From the
description to
a workflow

Description — Directed
Acyclic Graph (DAG) = the
((hOW”

e Common to Spark,
Dask, Parsl, Airflow, etc

e Allows for caching at
each node

e Canoptimise the DAG:
“elide” (remove) nodes if
result is never used

57

The

@oolkit

F.A.S.T = Faster
Analysis Software
Taskforce

e UK-based particle physics

e Started around May 2017

e Explore ways to accelerate and
improve our analysis code

e Use of 1to 3-day “hack-shops” to
test new ideas

59

The FAST implementation

For tools:
use Python

ﬁ"lproot

AWRYRES

NumEXxpr

at (&)

The FAST implementation

For tools:
use Python

. Numpy

pro ot

Awkward
Array

NumEXxpr

at (£2)

For data:
use Pandas

Demoed at CHEP 2018

pandas

Uit = BT + i + €t

ol w

had

What is
Pandas?

Extends numpy

A python package for handling

tabular data

o A Pandas dataframe == a
programmatic table

Feature rich:
o Input/ output in many formats (csy,
hdf, excel, etc)
o Table manipulations
o Plotting

https://pandas.pydata.org/

['foo', 'bar', 'foo', 'bar']
['one', 'one', 'two', 'three']
np.random. randn(4)

np.random. randn(4)

oONwW>X
nuwnn

df = pd.DataFrame({"A": A, "B": B,
llc!l: c' lIDII: D})

df

A B C D

0 foo one -0.678386 0.072926
1 bar one -0.338564 -1.038362
2 foo two 0.527912 -0.478806
3 bar three -0.237991 -1.296666

df.set_index(["A", "B"])

C D

>

B
foo one -0678386 0.072926
one -0.338564 -1.038362
foo two 0527912 -0.478806
bar three -0.237991 -1.296666

62

https://pandas.pydata.org/

The FAST implementation

For tools:
use Python

Awkward
Array

NumEXxpr

at (2)

For data:

use Pandas
Demoed at CHEP 2018

pandas

Yir = B'Tis + i + €t

ol w M

For descriptions:
use YAML...

Describing analysis
with YAML

e Asuperset of JSON
o Easiertoread

e Naturally declarative:
o No “control flow” (e.g. no for loops)

e Widely used to describe pipeline configuration:

o gitlab-Cl, travis-Cl, Azure CI/CD, Ansible,
Kubernetes, etc
o HEPData: YAML for reproducible Data

JSON

YAML

64

What datasets do
you need?

What is their
analysis-specific

meta-data?

What do you
want to do with
this data?

How do you want
to present these
results?

Step 1:
fast_curator

—~ D

Dataset
description

Step 2:
fast_carpenter
(using fast-flow)

:@>—aﬂ

Analysis
description

Step 3:
fast_plotter
fast_datacard

E—mﬂ

Plotting and
postprocessing

Step 1:
fast_curator

Curator: what files do you want to work on?

_t Dataset descriptions don’t change often
p . . . g .
e Track descriptions inrepo, easy to review

Command line tool to help write YAML
e Wild-card on the command line
e Hooks ready for experiment-specific catalogues, e.g. CMS DAS
e Integrate with Rucio (?)

Dataset
description

Dataset description

datasets:
- eventtype: data
Files: [input_files/HEPTutorial/files/data.root]
name: data
) :‘:‘l’:ts 469384 o Each.dataset has a list of files
- input_files/HEPTutorial/files/dy.root o A unique dataset name
- input_files/HEPTutorial/files/dy_2.root
name: dy
nevents: 77729
nfiles: 2

defaults:
eventtype: mc e Default metadata

nfiles: 1
tree: events

imfw::,ihis dir)/Wi.ynl" e CanImport other dataset files

- "{this_dir}/Wz.yml" e Build complex nested dataset descriptions

Step 2:
fast_carpenter

g}«ﬂ

Analysis
description

Take your trees and make them into tables
e Just like a carpenter

Table = Pandas DataFrame

Two main types of table for now:
e Histogram
e Cutflow

Cover most typical particle physics analyses
e BUT: very easy to extend

Command-line switch between different
work-flow managers / batch systems

Step 2 Take your trees and make them into tables
e . .
fast_ca[:'penter e Justlike acarpenter
Tabl¢e————————
BA DUM TSSS
g AN Two
[J
%/.} Y
== Cove lyses
@
Analysis
description Com "t
work
i

Step 2:
fast_carpenter

g}«ﬂ

Analysis
description

Take your trees and make them into tables
e Just like a carpenter

Table = Pandas DataFrame

Two main types of table for now:
e Histogram
e Cutflow

Cover most typical particle physics analyses
e BUT: very easy to extend

Command-line switch between different
work-flow managers / batch systems

Describe what to do \/idg dgl=ie Bl

stages:

What type of action to take at each step:

e Stagel = A built-in stage of fast-carpenter

e Stage2 = A stage imported from a python module - Stage2: module.that.provides.some.Stage

e IMPORT = Import a list of stages and their - IMPORT: "{this_dir}/another_description.yaml"
descriptions from another YAML file

- Stagel: StageFromBackend

Stagel:
keyword: value
another_keyword: [a, list, of, values]

Configure each named stage above Stage2:
argl:

takes: ["a", "dict"]
with: 3
different: keys

An example
set of stages

stages:

#

#
#

Just defines new variables
BasicVars: Define

A custom class to form the invariant mass of a

two-object system

DiMuons: cms_hep_tutorial.DiObjectMass
Filled a binned dataframe

NumberMuons: fast_carpenter.BinnedDataframe
Select events by applying cuts
EventSelection: CutFlow

Fill another binned dataframe

DiMuonMass: BinnedDataframe

73

Define Stage:
fast_carpenter.Define

. L] Ll
E”‘ - Muon_Pt: "sqrt(Muon_Px ** 2 4 Muon_Py ** 2)" Slmple operatlons
i - IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10 e Preserve the
140 -j'_ 4 - HasTwoMuons: NIsoMuon >= 2 “jaggedness”
120 ,
-
80 {Il 0
60 [ui Wi
prim
40 -2
i
20 .
ol 4
T
]]
.
jet index jet index

From Joosep Pata’s
talk at PyHEP

Define Stage:
fast_carpenter.Define

Pr n
(
Eﬂ' - Muon_Pt: "sqrt(Muon_Px ** 2 4 Muon_Py ** 2)" Slmple operatlons
i - IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10 e Preserve the
140 .j'_ 4 - HasTwoMuons: NIsoMuon >= 2 “jaggedness”
120 !
2 .
o0 | Take the Nth object - Muon_lead Pt: {reduce: 0, formula: Muon Pt}
Fa 0 (on the deepest dimension) - Muon_sublead_Pt: {reduce: 1, formula: Muon_Pt}
60 1"
L |l-
40 -2
i
20 W
o |l 4
0 I: ,
L]]
.
jet index jet index

From Joosep Pata’s
talk at PyHEP

Define Stage:
fast_carpenter.Define

PT n
(
E“ - Muon_Pt: "sqrt(Muon_Px ** 2 4 Muon_Py ** 2)" Slmple operatlons
i - IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10 e Preserve the
140 -j'_ 4 - HasTwoMuons: NIsoMuon >= 2 “jaggedness”
120 !
- .
80 s Take the Nth object - Muon_lead Pt: {reduce: 0, formula: Muon Pt}
.:E 0 (on the deepest dimension) - Muon_sublead_Pt: {reduce: 1, formula: Muon_Pt}
60 1"
L |l-
40 -2
i
20 — - NIsoMuon:
*1 & formula: IsoMuon_Idx
g I o reduce: count_nonzero
L e Reduce dimensionality with a
Iiet:indexJ Pje;:in:lex - IsoMuPtSum: function
romJoosep Fatas formula: Muon_Pt . .
talk at PyHEP ceduce: cum e Mask out objects in the event

mask: IsoMuon_Idx

Select events
fast_carpenter.CutFlow

DiMu_controlRegion:

weights:

{nominal: weight}

selection:

All:

{reduce: 0, formula: Muon_pt > 30}
leadJet_pt > 100

DiMuon_mass > 60

DiMuon_mass < 120

Any:

- nCleanedlet ==

- DiJet_mass < 500

- DiJet_deta < 2

Remove events from subsequent stages

Produces a cut-flow summary table
e Weighted/raw counts

Selection is specified as nested dictionaries
of A11, Any and a list of expressions

Individual cuts use same scheme as variable
definition

77

Output
of
CutFlow
stage

>>> import pandas as pd

>>> pd.read_csv("cuts_EventSelection-weighted.csv"

depth cut

(°]
1

All
NIsoMuon >= 2
triggerIsoMu24 ==

{'formula': 'Muon_|

All
NIsoMuon >= 2
triggerIsoMu24 ==

{'formula': 'Muon_|

All
NIsoMuon >= 2
triggerIsoMu24 ==

{'formula': 'Muon_|

All
NIsoMuon >= 2
triggerIsoMu24 ==

{'formula': 'Muon_|

All
NIsoMuon >= 2
triggerIsoMu24 ==

{'formula': 'Muon_|

All
NIsoMuon >= 2
triggerIsoMu24 ==

{'formula': 'Muon_|

All
NIsoMuon >= 2
triggerIsoMu24 ==

{'formula': 'Muon_|

All
NIsoMuon >= 2
triggerIsoMu24 ==

{'formula': 'Muon_|

All
NIsoMuon >= 2
triggerIsoMu24 ==

{'formula': 'Muon_|

passed_incl
unweighted

15995.
16208.
469384.
'reduce': 229710.
37263.
37559.

77729

'reduce': 73374.

(¢}

0.

'reduce': 16.
110.
a b

'reduce':

'reduce':

a b’

1%

109737.

'reduce': 99016.

243

244.
4580.
'reduce': 4214.
623.
623.

'reduce':

'reduce':

EventWeight

15995.
16208
469384
229710.
16628
16829
34115
32168

000000

.000000
.000000

000000

.843750
.451172
.511719
.121094

.000000
.000000
.507812
.819336
.676235
. 748312
.622986
.494965
.293686
.629749
.804932
.433960
.311917
.311917

209603.
191354
12

12

229

531250

. 781250
.577849
.639496
.949570

.997131
.157759
.157759
.927917
.436157
.985804
.998816
.922522
.362473

header=[0, 1], index_col=[0, 1, 2])

passed_excl
unweighted

15995.
16208.
16208.
15995.
37263.
37559.
37559.
37263.

[ololoNol

EventWeight

15995.
16208.
16208.
15995.
16628.
16829.
16829.
16628.

0.

000000
000000
0000E0
000000
843750
451172
451172
843750
00EEE0

.000000
.000000
.000000
.676235
. 748312
.748312
.676235
.293686
.629749
.293686
.293686
.311917
.311917
.311917
.311917
.577849
.639496
.639496
.577849
.157759
.157759
.157759
.157759
.985804
.998816
.998816
.985804

totals_excl
unweighted

469384.
469384.
16208.
16208.
77729.
Tl 298
37559.
37559.
142.
142.

0.

0.

0
°]
0
(0]
0]
0
0
0
0
0
0
0
0
0

111.0

Al)
36941.0
.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

36941

226.
206.
109737.
109737.
12

ik

Resulting cut-flow outputs from EventSelection config on
earlier slide

EventWeight

469384 .
469384.
16208.
16208.
34115.
34115.
16829.
.451172
79160.
79160.
.000000
.000000
.622986
.622986
.748312
.748312
.475586
.475586
.629749
.293686
.531250
.531250
.311917
.311917
.949570
.949570
.639496
.639496
.927917
.927917
.157759
.157759
.922522
.922522
.998816
.998816

16829

000000
000000
000000
000000
511719
511719
451172

507812
507812

Fill a histogram

fast_carpenter.BinnedDataFrame N,
fast_carpenter.BuildAghast * DTG SEnEm=

o Assume variable already discrete
(eg. NumberHits)
LG U B o Equal-width bins over a range
bm"fnf;n: NHuon} (eg. DiMuonMass)
- {in: NIsoMuon} o List of bin edges

weights: [EventWeight, EventWeight_ NLO up]

e Eventweights
DiMuonMass:

o Multiple weight schemes add columns
binning:
= 8 UL LERS . , e Output written to disk:
bins: {low: 60, high: 120, nbins: 60}

weights: {weighted: EventWeight} o Pandas to produce a dataframe in any

format
o Also (experimentally) to a Ghast

79

>>> import pandas as pd
>>> df = pd.read_csv('tbl dataset.dimu_mass--weighted.csv')

>>> print(df.groupby('dataset').nth([©, 1, 2]).set_index('dimu_mass', append=True))

n weighted:sumw weighted:sumw2
u pu o dimu_mass

(-inf, 60.0] NaN NaN

= 60.0, 61.0 NaN NaN
BinnedDataframe S L oK
(-inf, 60.0] .570801 .549133

stage (60.0, 61.0] 23.963226 12.091142
(61.0, 62.0] 25.572840 13.094129

@

.000000
.000000
.000000
. 741041
.065288
. 005831
.392980
.840432
.319709
.311917
.000000
.000000
.600221
.063284
.102053
. 320914
.053328
.000000
.360053
.000000
.000000

(o]

.000000
.000000
.000000
.100682
.004263
.000034
.072051
.236490
.075986
.097292
.000000
.000000
.221474
.004005
.005617
.007842
.001424
.000000
.002981
.000000
.000000

(-inf, 60.0]
(60.0, 61.0]
(61.0, 62.0]
single_top (-inf, 60.0]
(60.0, 61.0]
(61.0, 62.0]
(-inf, 60.0]
(60.0, 61.0]
(61.0, 62.0]
(-inf, 60.0]
(60.0, 61.0]
(61.0, 62.0]
(-inf, 60.0]
(60.0, 61.0]
(61.0, 62.0]
(-inf, 60.0]
(60.0, 61.0]
(61.0, 62.0]
(-inf, 60.0]
(60.0, 61.0]
(61.0, 62.0]

Showing only first three rows for each dataset (using groupby operation),

I=N

= (o]

F =
CO~NONUUNRKRRER OO NWO
[lolloNol

lollololoNoNoNoRNoNANoNoRoRoNoN N oNoN oo
[olloloNoNoNoNoNoNoNoNoNoNoNoNANoNoNoNoNol

User-defined
stages

stages:
- BasicVars: fast_carpenter.Define
- DiMuons: cms_hep_tutorial .DiObjectMass
- Histogram: BinnedDataframe

DiMuons:
mask: IsoMuon_Idx

Carpenter should provide most commonly needed
stages

But if it doesn’t: can define your own
o Breakout of declarative YAML to full, imperative python

Any importable python class with the correct interface

Keep separation of analysis decision from data-flow
81

User-defined
stages

def event(self, chunk):

Get the data as a pandas dataframe
pPX, py, pz, energy = chunk.tree.arrays(self.branches, outputtype=tuple)

Rename the branches so they're easier to work with here
if self.mask:
mask = chunk.tree.array(self.mask)

px = px[mask]
py = py[mask]
pz = pz[mask]

energy = energy[mask]

Find the second object in the event (which are sorted by Pt)
has_two_obj = px.counts > 1

Calculate the invariant mass

p4_0 = TLorentzVectorArray(px[has_two_obj, 0], py[has_two_obj, 0],
pz[has_two_obj, 0], energy[has_two_obj, 0])

p4_1 = TLorentzVectorArray(px[has_two_obj, 1], py[has_two_obj, 1],
pz[has_two_obj, 1], energy[has_two_obj, 1])

di_object = p4. 0 + p4_1

insert nans for events that have fewer than 2 objects
masses = np.full(len(chunk.tree), np.nan)
masses[has_two_obj] = di_object.mass

Add this variable to the tree
chunk.tree.new_variable(self.out_var, masses)
return True

82

Step 3:
fast_plotter
fast_datacard

F—mﬂ

Plotting and
postprocessing

fast-plotter:
e Easyto produce basic plots, tools to support
final publication-quality

e Command-line tool with reasonable defaults
and simple configuration

fast-datacard:
e Bringresulting DataFrames into CMS’
Combine fitting procedures

BinnedDataframes
into plots

e Plotontheright with:
fast plotter -y log \
-c plot config.yml \
-0 tbl *.csv

e YAML config:
o Colour scheme, axis labels
o Dataset definition
o Annotations
o Legend

Number of Events

o CMS Simulation Vs =7TeV
106 7 Em dy . ww single_top qed
mm ttbar EEE zZ m wjets e Data

60 70 80 20 100 110 120
Di-muon Mass, M, [GeV/c?]

Plot of DiMuonMass using binned dataframe from
fast-carpenter stage

84

“Analysis in a Cl pipeline”

mm ttbar NN 7z . wijets e Data
10° - Wz A

Make stage names more human friendly

Number of Events

@ 7jobsfrommaster

r O

01
"
g
51 ' R /
.
o f5a6f201 - @ 8.1 ‘
60 70 80 90 100 110 120
Di-muon Mass, M, [GeV/c?]

Pipeline Jobs 7

. CMS Simulation VS=7TeV
108 . wjets i | nb;r ‘- ww ‘ | zz‘
Get_input_data Configure_datasets Process_trees Make_plots adcd single top WM wz | o Data
10% . dy
g 100
(P get_input_data @ (¥)fast_curator_py2 © (¥)fast_carpenter_.. Q (¥)fast_plotter_py2 ©Q & 100
\ g 1024
(9 fast_curator_py3 Q (©)fast_carpenter_.. Q () fast_plotter_py3 Q T~ § 10t
104
107
102
T his: g |
° orun this: 5 _‘
o
.. . . 0
o Demo analysis in a pipeline R S T T

nisoMuons

o The gitlab-ci config
o Script tying the commands together

e Feasibility for huge datasets unclear, but can happily manage subsets of data for testing

https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/pipelines/734469
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/.gitlab-ci.yml
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/pipeline/Makefile

Just how
“fast” is this?

On alaptop: as quick as a C++ equivalent

For example, the demo repo:
e fast-carpenter: 6 seconds
e C++example: 4 seconds

Compared to existing LZ analysis code:
e about 50% faster than equivalent steps in C++

More benchmarks and examples on their way

Many optimisations possible
e caching, DAG optimisation, etc
e started working with Coffea to use them under the
hood

86

Current
FAST-HEP
codebase

Demonstrate the previous principles
e A Minimal Viable Product where we're continually
adding features
Hope to cover most analyses using just YAML
Easy to add user features when FAST-HEP doesn’t
include

Being used for 2 CMS analyses, LUX-ZEPLIN and ATLAS
investigated, used for design studies of DUNE, and FCC
experiments
e New features being fed back to core packages from
analysis-specific repositories
e Contributions growing from various activities

Keep our packages “slim”

87

Where to find the code

fast-carpenter

e All public on github:

o github.com/fast-hep/
o Main package:

github.com/fast-hep/fast-carpenter

On PyPl, e.g. fast-carpenter

Docker image with all tools: fasthep/fast-hep-docker

Docs: fast-carpenter.readthedocs.io/

ter.expressions module

terhelp module

Clonable demo analysis repositor
o gitlab.cern.ch/fast-hep/public/fast cms public tutorial

tersummary.aghast

Chat: gitter.im/FAST-HEP e e

enter.summary.binning

Docs » Indices and tables © Edit on GitHub

pypi WOSI build [passing

carpenter

Turns your trees into tables (ie. reads ROOT TTrees, writes summary Pandas DataFrames)
fast-carpenter can:

Be controlled using YAML-based config files

Define new variables

Cut out events or define phase-space “regions”

Produce histograms stored as CSV files using multiple weighting schemes
Make use of user-defined stages to manipulate the data

Powered by:

AlphaTwirl (presently): to run the dataset splitting

Atuproot: to adapt AlphaTwirl to use uproot

uproot: to load ROOT Trees into memory as numpy arrays

fast-flow: to manage the processing config files

fast-curator: to orchestrate the lists of datasets to be processed

Espresso: to keep the developer(s) writing code

Atool from the Faster Analysis Software Taskforce: http:/fast-hep.web.cern.ch/

Contents:

« Installing
o From Pypi
o From Source
« Key Concepts
o Goals of fast-carpenter
= From the user's perspective
= From the code and development perspective
o Overall approach for data-processing
= Step 1: Create dataset configs
= Step 2: Write a processing config
= Step 3: Run fast_carpenter
= Step 4: Produce plots
« Command-line Usage

https://github.com/fast-hep/
https://github.com/fast-hep/fast-carpenter
http://pypi.org/project/fast-carpenter
https://hub.docker.com/r/fasthep/fast-hep-docker
https://fast-carpenter.readthedocs.io/
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial
https://gitter.im/FAST-HEP/community

Wrapping up

Summary

Particle physics faces major computing challenges
e Lotsofdata
e Fewer relative resources

Python has become the dominant programming language outside of HEP
e E.g.industry, astrophysics
e Have we reached atipping point within HEP?

Many new tools to integrate HEP approaches into Python
e PyHEP and scikit-hep projects
e Columnar Data Analysis

Analysis Description Languages, such as FAST-HEP can push these approaches
even further

= b.krikler@cern.ch Y @benkrikler * benkrikler

91

The future HEP code landscape (?)

Low High
Fortran ¢ Ct+t Python AD.L. g
level HLS / Cuda / OpenMP level

The future HEP code landscape (?)

Low Fortran C Python H lgh
level HLS / Cuda / OpenMP level

What are they used for?

The future HEP code landscape (?)

Who needs to know them? 1st y-tudent

Finishi-tudent
Applied - student
Sims / recoRtetion experts e

Low High
Fortran ¢ Ct+t Python AD.L. g
level HLS / Cuda / OpenMP level

What are they used for?

Trigge

Links to talks that inspired this

Andrea Rizzi: CHEP 2019
https://indico.cern.ch/event/773049/contributions/3581369/attachments/1940586/3217540/Rizzi CHEP.pdf

Jim Pivarski: CHEP 2018 plenary:
https://indico.cern.ch/event/587955/contributions/3012337/attachments/1683637/2706186/pivarski-chep-analysistools.pdf

Jim Pivarski: CHEP 2018 parallel:

https://indico.cern.ch/event/587955/contributions/2937525/attachments/1678398/2695563/pivarski-chep-columnardata.pdf

Jake VanderPlas: PyCon 2017 https:/speakerdeck.com/iakevdp/the-unexpected-effectiveness-of-python-in-science

Jake VanderPlas: PyCon 2018 https:/speakerdeck.com/jakevdp/seven-strategies-for-optimizing-numerical-code

https://indico.cern.ch/event/773049/contributions/3581369/attachments/1940586/3217540/Rizzi_CHEP.pdf
https://indico.cern.ch/event/587955/contributions/3012337/attachments/1683637/2706186/pivarski-chep-analysistools.pdf
https://indico.cern.ch/event/587955/contributions/2937525/attachments/1678398/2695563/pivarski-chep-columnardata.pdf
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/seven-strategies-for-optimizing-numerical-code

AT L ST U N —" /]
Depreciation of Python 2
gi—=- 8 RIS R I

> Python 2.7 support will be WIthdrawn on lst January 2020 (evasraesed sy 2010

> Key packages have dropped support:
IPython, Jupyter, matplotlib, numpy, pandas,
scikit-learn, XGboost, dask, ...
For LHCb: Ganga

What's New in Python 2.7

* Not much news in Python 2.7...

* Until 2020, we'll only see
— security fixes

— support for new OS versions / tool chains
— rarely bug fixes

* Updates at http://pythonclock.org

https://python3statement.org/

Guido van Rossum - Python Language - PyCon 2016

christopher.burr@cern.ch o The Python ecosystem in HEP @ LHCb UK Student Meeting

R E LE ST Y R S/ /)

e Other reasons to use Python 3
) R v gt RN R T

Dictionaries are ordered (cyonssu.minons7s
* and ** behave sensibly R CERFSE PR S av))
In my experience, it’s been faster!
print is actually function with kwargs like sep, end and flush
Separate str/bytes types
Exception chaining
Keyword only arguments
Many little standard library improvements:
> Recursive globbing, LRU cache, secrets module, Enum

YYYYYYVYYY

Overall: It’s not any one feature, it’s just makes everything
quicker, easier and less buggy!

christopher.burr@cern.ch o The Python ecosystem in HEP @ LHCb UK Student Meeting

> My number one feature is f-strings eumonsss

mass_low
mass_high 250
cut — f'({mass_low} < D_Mass) & (D_Mass < {mass_high})"

> Why are they better?
» Compact and easy to read
> Bugs are generally easier to see
> Plays nicely with linters

'(%f < D_Mass) & (D_Mass < %f)' mass_low, mass_high
'({0} < D_Mass) & (D_Mass < {1})'.format(mass_low, mass_high)

low} < D_Mass) & (D_Mass < {mass_high})"'.format(mass_low, m

christopher.burr@cern.ch o The Python ecosystem in HEP @ LHCb UK Student Meeting

’lnm‘;;&.‘—"li‘ T LR ST T VI S/ /]

@ Python 2 will still work so why care?
NI s N\ L eSS M

1N

> You'll be stuck using old versions of libraries

> No bug fixes
> No new features
> No support: some libraries not automatically close issues that mention Python 2

> You can’t use new libraries
> No new shiny machine learning tools

> Wastes the time of library developers who support both
> Time can be better spent on support, bugfixes or new features

> |f you're ever forced to move, it will only get harder
» Minor incompatible changes to libraries add up over time
> |t’s easier to do many minor updates instead of a few massive ones

christopher.burr@cern.ch o The Python ecosystem in HEP @ LHCb UK Student Meeting

Jupyter Notebook?

In [3]:

Out[3]:

Waveforms will contain multiple components:

« Noise
« Pedestal
« One or more actual signal pulses

Here we assume that the shape of a signal pulse is given by the expression: f(x; 7) = xe! = +/¢

wave=Waveform([[150,80]],noise=2,pedestal=0)
wave.plot_all(show noise=True)
plt.legend()

<matplotlib.legend.Legend at ©x7fbSb6ff8860>

Waveform with 1 pulse, noise=2, and pedestal offset=0

100

Signal
Pedestal
Noise
Pulse

"
600
Time (clock ticks)

Template pulse

Now we set up our template pulse. We cheat here and use the analytic expression that we know is being used to generate the

pulses, but in a real situation this would be a sizeable task, i ing pulse regi ion and

We also fix all pulse shaping times from here on, to 50 ticks.

Great:
o Mixing code, documentation, and
results

Bad:

Code canstill be dense

Scaling to full analysis?
Connecting to batch system tricky
Version control

O O O O

Carpenter can be used via Python
API: provide python dicts instead of
YAML

o Addresses some of bad points
above

100

Interplay in
a typical
user's
analysis
repo

Analysis repository

yaml python
32[?l aS:tiiZn gatasett_ gnalysii_ 82§0m ggﬁ?m
routines (C.1)| |O€SCMPUON| [CESCMPUONE | stages | | processing

£ ast_curatorT

vy [

dataset
description

[Curator] [Carpenter [

fast_carpenter | [%

create tables

Validate
automated
comparison

of outputs

Validation
summary

Flow
analysis
description

Previous
results

Datacard
—| fitinputs from

5

rearrange and plot
dataframes

fromtrees) | fast _plotter[Plotter]
T —>

FAST-HEP packages A
pypi, github, docker -

dataframes

—

Analysis Results

101

DecayLanguage

Programmatic interface to:
e Parametrise
e Visualise
e And generate from
Particle decay chains

Mainly used on LHCb so far

Helpful for our background tables?
e Canextend particle data with
isotope specifications

: dc = dfp_Dst.build decay chains('D*+')

DecayChainViewer (dc)

Do

it

0.677

0.988228297

D+

o

0.016

0.011738247
3.3392e-05

0.988228297

0.011738247

Scikit-validate

e

Scikit-validate

Physics Validation for small software projects ‘&

Luke Kreczko
\/ 16th October 2019

e |uke’s package grown out of FAST hack-shops
e Predominantly usedonLZ sofar
e Interested from various people in the room to use it

Hack-shop=
%2 hackathon + % workshop

e Talks toset the scene, get everyone up to speed, layout goals
o Given newcomers: Today will also be walkthrough / tutorial

e Focussed hacking: people “in aroom” for a couple of days
o e.g “play” with setting up an analysis using these tools

e Feelfreeto ask questions at any time

o Collaborative not competitive like traditional hackathon
o Slackor Zoom

104

Panel

Plotting library comparison

The Panel library from PyViz lets you make widget-controlled apps and
dashboards from a wide variety of plotting libraries and data types. Here you
can try out five different plotting libraries controlled by a couple of widgets,
for Hans Rosling's gapminder example.

Year: 1952

Show legend

Keynote on
interactive data
exploration using

Panel
https:/medium.co
m/@philipp.jfr/pan

el-announcement-
2107c2b15f52

o hvPlot/Bokeh: Life expectancy vs. GDP, 1952

0]
"] pe ®
g o ‘.n.°
£ . e @
60]
& °® Ve o
] ° . -. o * £
]] L
g“’ ° .o 0 T
¢ @ : 00,9 @ o
L . ® o ®,* " e Africa
.‘ ‘ ° % 2 @ Americas
e .
o S Q° :. o © Asa
@ Europe
20 T T T T T
500 1000 2000 5000 10000
GDP per capita {2000 dollars)
. Matplotiib: Life expectancy vs. GDP, 1952
80
.
2 oo ®
H ° '. ‘.
3
g% ® LA S
% = . o, @ ° °
g ° .._ o0 .o. 4 .
& ® ®
~ ol ® ' o o .9'. 2 %
oo o o
° ‘ L ¢
. ‘ e o ® @ Afrce
L) °
0 ® ° Americas
Asa
Europe

20

10°
GOP per capita {2000 dollars)

Altair/Vega: Life expectancy vs. GDP, 1952

.‘ o« 7
.
@ .Q .‘ "
s J¥ e~ .
el i
[] .’
100 200 300 4050 1000 2000 3000 5000 10000
GDP per capita (2000 dollars)
Plotly: Life expectancy vs. GDP, 1952
® Africa
70- ® Americas
= ® Asia
H @ Europe
g 60
>
o
5 50-
©
@
a
]
@ 40~
3
30-

GDP per capita (2000 dollars)

105

https://medium.com/@philipp.jfr/panel-announcement-2107c2b15f52
https://medium.com/@philipp.jfr/panel-announcement-2107c2b15f52
https://medium.com/@philipp.jfr/panel-announcement-2107c2b15f52
https://medium.com/@philipp.jfr/panel-announcement-2107c2b15f52

Flamedisx - extended PLR for XenoniT

e https://indico.cern.ch/event/833895/timetable/#17-fast-likelihood-analysis-in
e Factorize into matrix multiplication, use tensorflow with gradients to optimse

Model function PMF/PDF 1071 5
Lindhard factor --- -~ ™ Poisson] — Classical (cS1, ¢S2)
S1(x,y,z) efficiency “J (Beta-)Binomial c 1 — Full(S1,S2,x,y,21)
Penning quenching}- T “J Binomial i)
1 oy (@}
SPE resolution}_ ! J Normal & 1021
DPE fraction) ;! iy]
v bos
>
]
V4
3 10-3
El', 10 3
=]
i
100
& o
1 c
[2 60
! i ' Model function é -
K(S1.52.x | 0 g;aﬁi ! i * - - Single electron gain o
(BLSzx |0y = E i Electron lifetime g 201
Extraction efficiency 0 T

Q 0 20 40 60 80 100
.......... {A); 1 TeV/c™2 WIMP acceptance (%)

https://indico.cern.ch/event/833895/timetable/#17-fast-likelihood-analysis-in

