3 sujets IRFU/DPhP

Dernière mise à jour :


««

• Astroparticules

 

ETUDE DU CENTRE GALACTIQUE ET RECHERCHES D’EMISSION DIFFUSES EN RAYONS GAMMA DE TRES HAUTE ENERGIE AVEC H.E.S.S. ET PERSPECTIVES POUR CTA

SL-DRF-24-0578

Domaine de recherche : Astroparticules
Laboratoire d'accueil :

Service de Physique des Particules (DPHP)

Groupe Astroparticules (GAP)

Saclay

Contact :

Emmanuel MOULIN

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Emmanuel MOULIN
CEA - DRF/IRFU//GAP

01 69 08 29 60

Directeur de thèse :

Emmanuel MOULIN
CEA - DRF/IRFU//GAP

01 69 08 29 60

Les observations en rayons gamma de très hautes énergies (>100 GeV) sont cruciales pour la compréhension des phénomènes non-thermiques les plus violents à l’oeuvre dans l’Univers. Ces
rayons gamma permettent d’étudier des questions fondamentales sur un vaste éventail de sujets comme les trous noirs supermassifs, l’origine des rayons cosmiques, et la recherche de nouvelle physique au-delà du Modèle Standard. Les observations multi-longueur d’ondes du centre de la Voie Lactée dévoilent une région complexe et active avec l’accélération de rayons cosmiques à des énergies au-delà du TeV au sein d’objets astrophysiques comme le trou noir supermassif Sagittarius A* au centre de la Voie Lactée, des vestiges de supernova ou des régions de formation d’étoiles. Le Centre Galactique (CG) est l’une des régions du ciel les plus étudiées dans de nombreuses longueurs d’onde, et a fait l’objet de temps d’observations parmi les plus conséquents avec les observatoires haute énergie. Au-delà de la diversité d’accélérateurs astrophysiques, la région du CG devrait être la source la plus brillante d’annihilations de particules de matière noire en rayons gamma.
Le CG abrite un Pevatron cosmique, i.e., un accélérateur de rayons cosmiques jusqu’à des énergies du PeV, des émissions diffuses du GeV au TeV dont le « Galactic Center Excess » (GCE)
dont l’origine est encore inconnue, de potentielles sources variables au TeV, ainsi que possibles populations de sources non encore résolues. L’interaction d‘électrons accélérés au sein de ces
objets produit des rayons gamma de très hautes énergies par diffusion Compton inverse des électrons sur les champs de radiation ambiants. Ces rayons gamma peuvent être aussi produits à
travers la décroissance de pions neutres produits lors de l’interaction inélastique de protons/noyaux avec le gaz ambiant. Parmi les populations de sources non résolues au CG se trouvent une
population de pulsars millisecondes dans le bulbe Galactique ou encore une population de trous noirs de masses intermédiaires (~20-10^5 Msun) suivant la distribution de matière noire du halo. De l’ordre de 10^3 sources permettraient d’expliquer le GCE. De telles populations de sources laisseraient des empreintes caractéris-tiques dans les fluctuations spatiales du bruit de
fond pour lesquelles les balayages de la région du CG en rayons gamma au TeV avec les observatoires H.E.S.S. et le futur CTA constituent un outil unique pour les rechercher.
L’observatoire H.E.S.S. (High Energy Stereoscopic System) composé de cinq télescopes à effet Cherenkov atmosphérique, détecte des rayons gamma de quelques dizaines de GeV à plusieurs dizaines de TeV. Depuis 2004, H.E.S.S. observe du CG, avec récemment une campagne d’observation sur plusieurs degrés autour du CG. L’ensemble des données accumulées jusqu’à présent fournit une sensibilité sans précédent pour étudier l’accélération et la propagation de rayons cosmiques, et rechercher des signaux diffus de matière noire dans la région la plus prometteuse du ciel. Ces observations et études sont primordiales pour préparer les programmes d’observations du futur observatoire CTA, optimiser leur mise en oeuvre, et préparer leurs futures analyses.
La thèse portera sur l’analyse et l’interprétation des observations effectuées dans la region centrale de la Voie Lactée avec l’observatoire H.E.S.S. depuis plus de 20 ans. La première partie du travail sera dédiée à l'analyse bas-niveau des données du Centre Galactique, l'étude des incertitudes systématiques dans ce jeu de données massifs, et le développement de modèles de bruit de fond dédié. Dans une seconde partie, l'étudiant(e) combinera l’ensemble des données des phases 1 et 2 de H.E.S.S. pour rechercher des émissions diffuses Galactiques au TeV, des populations de sources non résolues et des signaux de matière noire à l'aide de techniques d'analyse utilisant des patrons pour le signal et le bruit de fonds. La troisième partie portera sur l’implémentation du nouveau cadre d’analyse pour le futur observatoire CTA pour préparer les analyses à venir en utilisant les patrons de signal et de bruit de fond les plus à jour. L'étudiant(e) sera impliqué(e) dans la prise de données et la sélection des observations H.E.S.S.
Phénomenes astrophysiques transitoires à haute énergie

SL-DRF-24-0498

Domaine de recherche : Astroparticules
Laboratoire d'accueil :

Service de Physique des Particules (DPHP)

Groupe Astroparticules (GAP)

Saclay

Contact :

Fabian Schussler

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Fabian Schussler
CEA - DRF/IRFU

+33169083020

Directeur de thèse :

Fabian Schussler
CEA - DRF/IRFU

+33169083020

Page perso : https://www.multimessenger-astronomy.com/

Labo : https://irfu.cea.fr/dphp/index.php

Le cœur du projet de thèse proposé sera la recherche en temps réel d'émissions transitoires de haute énergie liées à la détection d'ondes gravitationnelles et d'autres transitoires astrophysiques multi-messagers comme les neutrinos de haute énergie, les sursauts de rayons gamma, les sursauts radio rapides, les explosions stellaires/nova, etc. Les observations combinées de plusieurs instruments et messagers cosmiques prouveront sans équivoque l'existence d'un accélérateur de particules de haute énergie lié à ces phénomènes et permettront d'obtenir de nouvelles informations sur les explosions les plus violentes de l'univers.
En rejoignant les collaborations H.E.S.S., CTA et SVOM, le candidat au doctorat sera en mesure de diriger les passionnantes campagnes MWL et multi-messagers collectées pendant le cycle physique O4 des interféromètres GW, les premiers événements neutrinos de haute énergie détectés par KM3NeT et les premiers GRBs détectés par le satellite SVOM. Le candidat au doctorat aura également l'opportunité de participer au développement de la plateforme Astro-COLIBRI permettant de suivre les phénomènes transitoires en temps réel via des applications sur smartphone.
Premières observations du ciel gamma au TeV avec la caméra NectarCAM pour l’observatoire CTA

SL-DRF-24-0435

Domaine de recherche : Astroparticules
Laboratoire d'accueil :

Service de Physique des Particules (DPHP)

Groupe Astroparticules (GAP)

Saclay

Contact :

Francois BRUN

Jean-François Glicenstein

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Francois BRUN
CEA - DRF/IRFU


Directeur de thèse :

Jean-François Glicenstein
CEA - DRF/IRFU/DPHP/HESS 2

0169089814

Labo : https://irfu.cea.fr/dphp/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=3429&voir=technique

L’astronomie des très hautes énergies est une partie de l’astronomie relativement récente (30 ans) qui s’intéresse au ciel au-dessus de 50 GeV. Après les succès du réseau H.E.S.S. dans les années 2000, un observatoire international, le Cherenkov Telescope Array (CTA) devrait entrer en fonctionnement à l’horizon 2025. Cet observatoire comportera une cinquantaine de télescopes au total, répartis sur deux sites. L’IRFU est impliqué dans la construction de la NectarCAM, une caméra destinée à équiper les télescopes « moyens » (MST) de CTA. Le premier exemplaire de cette caméra (sur les neuf prévues) est en cours d’intégration à l’IRFU et sera installé sur le site Nord de CTA en 2025. Une fois la caméra installée, les premières observations du ciel pourront avoir lieu, permettant de valider entièrement le fonctionnement de la caméra. La thèse vise à finaliser les tests en chambre noire à l’IRFU, préparer l’installation et valider le fonctionnement de la caméra sur le site de CTA. Elle vise également à effectuer les premières observations astronomiques avec ce nouvel instrument. Il est également prévu de participer à l’analyse des données de la collaboration H.E.S.S., sur des sujets d’astroparticules (recherche de trous noirs primordiaux, contraintes sur l’Invariance de Lorentz à l’aide d’AGN lointains).

 

Retour en haut