3 sujets IRFU/DPhP

Dernière mise à jour :


««

• Astrophysique

 

Analyse de données et physique fondamentale avec LISA et Pulsar Timing Array

SL-DRF-24-0288

Domaine de recherche : Astrophysique
Laboratoire d'accueil :

Service de Physique des Particules (DPHP)

Groupe Astroparticules (GAP)

Saclay

Contact :

Marc Besancon

Antoine PETITEAU

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Marc Besancon
CEA - DSM/IRFU/SPP


Directeur de thèse :

Antoine PETITEAU
CEA - DRF/IRFU


Il existe deux types d'instruments pour observer les ondes gravitationnelles (GW) à basse fréquence : l'interféromètre spatial dans la bande des milliHertz (mHz) LISA et le Pulsar Timing Array (PTA) dans la bande des nanoHertz (nHz). Ils sont complémentaires soit en observant deux parties des mêmes sources comme pour les fonds stochastiques, soit deux parties de la même population de sources comme pour les binaires de trous noirs massifs.
LISA est un observatoire spatial GWs dont le lancement est prévu en 2035. Il se compose de trois satellites en chute libre sur une orbite héliocentrique formant un triangle équilatéral. Les satellites échangent de la lumière laser formant de multiples interféromètres permettant d'observer une pléthore de sources astrophysiques et cosmologiques de GW. Ces sources incluent des binaires de naines blanches galactiques, des inspirals à rapport de masse extrême, des binaires de trous noirs massifs et des fonds stochastiques.
PTA utilise le timing des pulsars millisecondes pour observer les GW. Les pulsars millisecondes émettent environ des centaines d'impulsions radio par seconde avec une très grande régularité. Les GW passant entre le pulsar et la Terre modifient le temps d'arrivée des impulsions. La synchronisation d'un réseau de pulsars permet de réaliser un détecteur GW à l'échelle galactique. De multiples radiotélescopes contribuent au PTA, notamment le Radiotélescope de Nançay. En juin 2023, 4 collaborations PTA ont annoncé les résultats de 20 ans de chronométrage des pulsars : une preuve solide d'un signal GWs. Le signal doit encore être caractérisé et son origine établie. Il pourrait avoir été émis par un ensemble de trous noirs supermassifs ou par des processus survenus dans l'Univers primordial. Si les deux systèmes d'observation sont différents, les méthodes d'analyse des données sont similaires. Un grand espace de paramètres doit être échantillonné pour extraire les sources qui se chevauchent et les démêler des bruits non stationnaires.
Les GW sont une nouvelle façon d'en apprendre davantage sur la physique fondamentale. Par exemple, nous pouvons tester la relativité générale avec la fusion des trous noirs supermassifs binaires et inspirals à rapport de masse extrême et tester la physique des particules au-delà du modèle standard, grâce à la détection du fond stochastique (SGWB) des transitions de phase dans l'Univers primitif. Le candidat travaillera au CEA-IRFU (Institut de Recherche sur les Lois Fondamentales de l'Univers) au sein d'une équipe transdisciplinaire menant des recherches sur les GW. Cette activité va de l'implication instrumentale dans la mission LISA aux conséquences astrophysiques ou cosmologiques de l'exploitation des signaux, en passant par le développement d'algorithmes, de simulations et d'analyses de données. L'Irfu est également impliqué dans PTA-France et International PTA. Développer des méthodes de détection des sources d'ondes gravitationnelles et détecter les conséquences physiques associées est au coeur du sujet de thèse proposé. Le candidat aura l'occasion de s'intéresser à tous les aspects de l'activité de l'équipe d'accueil et d'interagir avec chacun de ses membres. Les principaux objectifs des travaux proposés sont de développer des méthodes d'analyse de données pour LISA, en tirant parti des développements de PTA et LISA, et d'étudier la synergie entre les observations LISA et PTA pour la physique fondamentale, notamment avec les SGWB et les Trous Noirs Massifs (MBH). . Les méthodes développées peuvent également être adaptées et appliquées à des données PTA réelles. Le candidat sera membre des collaborations LISA, PTA-France, EPTA et IPTA. Il/elle interagira avec les membres du Groupement de Recherche Ondes Gravitationnelles et collaborera avec des physiciens du laboratoire Astroparticules et Cosmologie (APC). Il présentera ses résultats au sein des consortiums LISA et PTA et lors de conférences internationales.
Détecter les premiers amas de galaxies de l'Univers dans les cartes du fond diffus cosmologique

SL-DRF-24-0595

Domaine de recherche : Astrophysique
Laboratoire d'accueil :

Service de Physique des Particules (DPHP)

Groupe Cosmologie Millimétique

Saclay

Contact :

Jean-Baptiste Melin

Date souhaitée pour le début de la thèse : 01-09-2024

Contact :

Jean-Baptiste Melin
CEA - DRF/IRFU/DPHP/Cosmo mm

01 69 08 73 80

Directeur de thèse :

Jean-Baptiste Melin
CEA - DRF/IRFU/DPHP/Cosmo mm

01 69 08 73 80

Labo : https://irfu.cea.fr

Les amas de galaxies, situés aux nœuds de la toile cosmique, sont les plus grandes structures de l’Univers liées par la gravitation. Leur nombre et leur distribution spatiale sont très sensibles aux paramètres cosmologiques, comme la densité de matière dans l’Univers. Les amas constituent ainsi une sonde cosmologique performante. Elle a fait ses preuves ces dernières années (sondages Planck, South Pole Telescope, XXL, etc.) et promet de grandes avancées les prochaines années (sondages Euclid, Observatoire Vera Rubin, Simons Observatory, CMB-S4, etc.).
Le pouvoir cosmologique des amas de galaxies s’accroît avec la taille de l’intervalle de décalage vers le rouge (redshift) couvert par le catalogue. Le figure jointe montre les domaines de redshift couverts par les catalogues d’amas extraits des expériences d’observation du fond diffus cosmologique (première lumière émise dans l’Univers 380000 ans après le Big Bang). Ainsi, Planck a détecté les amas les plus massifs de l’Univers dans 0 Seules les expériences étudiant le fond diffus cosmologique pourront observer le gaz chaud dans ces premiers amas à 2 Il faut donc essayer de comprendre et modéliser l’émission du gaz des amas en fonction du redshift, mais aussi celle des galaxies radio et infrarouge qu’ils contiennent pour pouvoir préparer la détection des premiers amas de galaxies de l’Univers.
L’Irfu/DPhP a développé les premiers outils de détection d’amas de galaxies dans les données du fond diffus cosmologique dans les années 2000. Ces outils ont été utilisés avec succès sur les données Planck et sur les données sol, comme celles de l’expérience SPT. Ils sont efficaces pour détecter les amas de galaxies dont l’émission est dominée par le gaz mais leur performance est inconnue dans le cas où l‘émission par les galaxies radios et infrarouges est importante.
Le travail de thèse consistera dans un premier temps à étudier et modéliser les émissions radio et infrarouge des galaxies des amas détectés dans les données du fond diffus cosmologique (Planck, SPT et ACT) en fonction du redshift.
Dans un second temps, on quantifiera l’impact de de ces émissions sur les outils de détection d’amas existants, dans le domaine de redshift actuellement sondé (0 Enfin, à partir de notre connaissance acquise sur ces émissions radio et infrarouge des galaxies dans les amas, on développera un nouvel outil d’extraction d’amas destiné aux amas à grand redshift (2
Etude de l'inflation avec des quasars et de galaxies dans DESI

SL-DRF-24-0627

Domaine de recherche : Astrophysique
Laboratoire d'accueil :

Service de Physique des Particules (DPHP)

Groupe Cosmologie (GCOSMO)

Saclay

Contact :

Etienne Burtin

Christophe YECHE

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Etienne Burtin
CEA - DRF/IRFU/DPHP/GCOSMO

01 69 08 53 58

Directeur de thèse :

Christophe YECHE
CEA - DRF/IRFU/SPP/Bao

01-69-08-70-50

Les mesures des propriétés statistiques de la structure de l’univers à grande échelle (LSS) fournissent des informations sur la physique qui a généré les fluctuations primordiales de densité. En particulier, elles permettent de distinguer différents modèles d’inflation cosmique en mesurant la non-gaussianité primordiale (PNG), l’écart par rapport aux conditions initiales du champ aléatoire gaussien.

Notre stratégie pour étudier les LLS, consiste à utiliser un relevé spectroscopique, DESI, dont l’instrument a été mis en service à la fin de l'année 2019. DESI observera 40 millions de galaxies et de quasars. Les observations ont lieu au télescope Mayall de 4 m en Arizona. Depuis le printemps 2021, le projet a débuté une période d’observation sans interruption qui durera 5 ans, ce qui permettra de couvrir un quart de la voute céleste.

Pour ce projet de thèse, les LSS sont mesurées avec deux traceurs de la matière : les galaxies très lumineuses rouges (LRG) et les quasars, objets très lointains et très lumineux. Ces deux traceurs nous permettent de couvrir une large plage en redshift allant de 0.4 à 4.0.

Au cours de sa première année de thèse, l’étudiant participera à la fin de l’analyse de la première année d’observation. Il étudiera en particulier, la structuration à grandes échelles avec des quasars et des galaxies (LRG). Son travail consistera aussi à évaluer toutes les sources possibles de biais dans la sélection des quasars et des LRG qui pourraient contaminer un signal cosmologique. Dans un deuxième temps, l’étudiant développera une analyse plus sophistiquée qui mettra en œuvre les statistiques à trois points comme le bispectre et qui sera étendue à un échantillon plus important représentant les trois premières années d’observation de DESI.

 

Retour en haut