18-02-2020

Following SPIRAL2's commissioning authorization issued by the French Nuclear Safety Authority (ASN) on July 8, 2019, many crucial steps were successfully completed by the end of 2019. A first proton beam was accelerated to 33 MeV, the nominal energy by the SPIRAL2 linear accelerator (LINAC) and a first test experiment was achieved the Neutron For Science (NFS) experimental room.


These first results in 2019 are very promising. They will continue in 2020 with the increase in beam power up to 10% of the maximum design power. In parallel test experiments in NFS will be carried out.

 

13-03-2020
The highest magnetic fileds of the Universe reproduced by numerical simulations

Magnetars are neutron stars endowed with the strongest magnetic fields observed in the Universe, but their origin remains controversial. In a study published in Science Advances, a team of scientists from the Astrophysics Division at CEA-IRFU / AIM Laboratory and collaborators from the Max Planck Institute and the Institut de Physique du Globe de Paris developed a new and unprecedentedly detailed computer model that can explain the genesis of these gigantic fields through the amplification of pre-existing weak fields when rapidly rotating neutron stars are born in collapsing massive stars. The work opens new avenues to understand the most powerful and most luminous explosions of such stars.

13-02-2020

To measure cosmological parameters, the Euclid space telescope will use two main probes: gravitational lensing (Weak Gravitational Lensing) and galaxy distribution (Galaxy Clustering). These measurements will allow us to study dark energy and dark matter, which affect the growth of cosmic structures and the accelerated expansion of the Universe.

In addition to its implications on instrumental developments and data processing, Irfu is actively involved in the development of algorithms needed to prepare the extraction of cosmological parameters that will be derived from Euclid measurements.

Coordinated by Valeria Pettorino, physicist at Irfu's CosmoStat laboratory, in collaboration with Tom Kitching (UCL[1]) and Ariel Sanchez (MPE[2]), an international team from the Euclid collaboration with complementary expertise in theory and observation has just completed a 3-year study characterizing the performances expected from Euclid for these observational probes.


Publication an Arxiv: https://arxiv.org/pdf/1910.09273.pdf


[1] University College London ; [2] Max Planck Institute for extraterrestrial physics
23-01-2020

Arrived safely. The focal plane of the visible imager on the Euclid satellite has just been delivered by Irfu to the laboratory responsible for the instrument (MSSL/UK) to continue its integration into the satellite, which is scheduled to take off in 2022. 

The first studies of this focal plane have been carried out at Irfu since 2010 and after almost 10 years of development and testing, it was fully tested by Irfu in 2019. This Focal Plane is composed of 36 CDDs totalizing more than 600 million pixels. Each image acquired in flight by this focal plane will make it possible to characterize more than 50,000 galaxies. It is the second largest camera, observing in the visible, launched into space after that of the Gaïa satellite. In space, its observations will allow the measurement of galaxy deformations due to weak gravitational lensing effects induced by clusters of dark matter that light encounters on its way to us. These gravitational distortion effects measured at different ages of the Universe will provide measurements of the distribution of dark matter and will be a constraint on dark energy.

13-01-2020
A collision of the Milky Way with a small galaxy accurately dated by the study of the star ν Indi

ν Indi is a bright star (visual magnitude mv = 5.3) visible with the naked-eye from the southern hemisphere. By using ground data (ESO telescopes), space data (Gaia and Tess missions) and by combining very diverse spectroscopic, astrometric, kinematic or asteroseismological information, an international team including two researchers from the Department of Astrophysics / AIM Laboratory of CEA-Saclay was able to determine the epoch, between 11.6 and 13.2 billion years ago, of a collision between our galaxy and a small dwarf galaxy, Gaia-Enceladus. This work is published in the journal Nature Astronomy, January 2020.

18-02-2020

Following SPIRAL2's commissioning authorization issued by the French Nuclear Safety Authority (ASN) on July 8, 2019, many crucial steps were successfully completed by the end of 2019. A first proton beam was accelerated to 33 MeV, the nominal energy by the SPIRAL2 linear accelerator (LINAC) and a first test experiment was achieved the Neutron For Science (NFS) experimental room.


These first results in 2019 are very promising. They will continue in 2020 with the increase in beam power up to 10% of the maximum design power. In parallel test experiments in NFS will be carried out.

 

23-01-2020

Arrived safely. The focal plane of the visible imager on the Euclid satellite has just been delivered by Irfu to the laboratory responsible for the instrument (MSSL/UK) to continue its integration into the satellite, which is scheduled to take off in 2022. 

The first studies of this focal plane have been carried out at Irfu since 2010 and after almost 10 years of development and testing, it was fully tested by Irfu in 2019. This Focal Plane is composed of 36 CDDs totalizing more than 600 million pixels. Each image acquired in flight by this focal plane will make it possible to characterize more than 50,000 galaxies. It is the second largest camera, observing in the visible, launched into space after that of the Gaïa satellite. In space, its observations will allow the measurement of galaxy deformations due to weak gravitational lensing effects induced by clusters of dark matter that light encounters on its way to us. These gravitational distortion effects measured at different ages of the Universe will provide measurements of the distribution of dark matter and will be a constraint on dark energy.

10-03-2020

INCL (Liège intranuclear cascade) is a simulation code known for its ability to model light particle-nucleus interactions. It is used in very various fields, such as proton therapy, neutron sources, radioactive ion beams or ADS's (Accelerator Driven Systems). In order to extend its capabilities in the field of higher energy reactions, in connection with cosmic rays or with the study of hypernuclei, a team of physicists led by Irfu has recently developed a new version of the code involving strange particles. This work was at the heart of a recently defended thesis (2019) and the new possibilities offered by this code were published in early 2020 in the journal Physical Review C [1].
 

08-01-2020

The international CUPID-Mo experiment conducted by French laboratories of IN2P3, CEA/IRFU and CEA/IRAMIS has been testing the use of Molybdenum-based crystals since last April to detect double beta decay without neutrino emission. The experiment is gradually gaining strength and already shows a near-zero background in the region of interest, which is very promising. The scientists of the collaboration made an update in the occasion of the official inauguration on 11 and 12 December 2019.

18-02-2020

Following SPIRAL2's commissioning authorization issued by the French Nuclear Safety Authority (ASN) on July 8, 2019, many crucial steps were successfully completed by the end of 2019. A first proton beam was accelerated to 33 MeV, the nominal energy by the SPIRAL2 linear accelerator (LINAC) and a first test experiment was achieved the Neutron For Science (NFS) experimental room.


These first results in 2019 are very promising. They will continue in 2020 with the increase in beam power up to 10% of the maximum design power. In parallel test experiments in NFS will be carried out.

 

23-01-2020

Arrived safely. The focal plane of the visible imager on the Euclid satellite has just been delivered by Irfu to the laboratory responsible for the instrument (MSSL/UK) to continue its integration into the satellite, which is scheduled to take off in 2022. 

The first studies of this focal plane have been carried out at Irfu since 2010 and after almost 10 years of development and testing, it was fully tested by Irfu in 2019. This Focal Plane is composed of 36 CDDs totalizing more than 600 million pixels. Each image acquired in flight by this focal plane will make it possible to characterize more than 50,000 galaxies. It is the second largest camera, observing in the visible, launched into space after that of the Gaïa satellite. In space, its observations will allow the measurement of galaxy deformations due to weak gravitational lensing effects induced by clusters of dark matter that light encounters on its way to us. These gravitational distortion effects measured at different ages of the Universe will provide measurements of the distribution of dark matter and will be a constraint on dark energy.

 

Retour en haut