Highlights 2019

15-05-2019
The predictions of nuclear properties based on a realistic description of the strong interaction is at the heart of the ab initio endeavour in low-energy nuclear theory. Ab initio calculations have long been limited to light nuclei or to nuclei with specific proton and neutron numbers. Theoreticians from Irfu/DPhN have developed novel ab initio methods that led to a significantly increase of the number of nuclei that can be accessed.
02-05-2019
An international collaboration led by the institutes of CEA-IRFU and of RIKEN (Japan) demonstrates, for the first time, the exceptional stability of the very-neutron rich nickel-78 nucleus and its doubly-magic character. The experiment at RIKEN was made possible by the unique combination of the MINOS device developed at CEA-Irfu and the very exotic beams produced by the RIBF facility of the Japanese accelerator.These results are published in Nature [Nat19].  
21-03-2019
The STEREO experiment releases new results based on the detection of about 65000 neutrinos at short distance from the research reactor of the ILL-Grenoble. The improved accuracy is rejecting the hypothesis of a 4th neutrino in a large fraction of the domain predicted from the reactor neutrino anomaly. Profiting from a good control of the detector response, STEREO now also releases its first absolute measurements of the neutrino rate and the spectrum shape.
20-03-2019
Two chimneys of hot gas found around the central back hole
Thanks to the X-ray satellites Chandra and XMM-Newton, an international team including the Department of Astrophysics of CEA-Irfu has just discovered the existence of two bubbles of hot gas escaping to distances of about 500 light-years, on both sides of the massive black hole environment, in the center of our galaxy.
04-03-2019
The large ALMA interferometer reveals a population of galaxies not yet detected by the Hubble Space Telescope
An international team, led by researchers from the Department of Astrophysics/AIM Laboratory of CEA-Irfu has just highlighted a new population of very remote galaxies, which had so far escaped the deepest observations of the Universe. During the summer of 2016, at more than 5000 meters of altitude on the Chilean highlands, the antennas of the large interferometer ALMA (Atacama Large Millimeter/submillimeter Array) scrutinized for more than 20 hours one of the best studied regions of the sky.
27-01-2019
An international collaboration, involving the Astrophysics Department-Laboratory AIM of CEA irfu, participated in the study of an exoplanetary system, Kepler-107 and revealed an amazing distribution of its 4 planets of which two seem potentially resulting from a giant impact. Thanks to asteroseismology (the study of star vibrations) and the modeling of planetary transits, researchers have been able to determine the mass and radius of the central star and its planets with great precision.
21-01-2019
On November 29, 2018, the first version of the ECU software for the ECLAIRs instrument was delivered. This computer, called Gamma Camera Management and Scientific Processing Unit, will be set on the Franco-Chinese SVOM satellite, designed to study gamma-ray bursts. It will allow the management of the ECLAIRs instrument and the detection of gamma-ray bursts by the SVOM mission in real time on board.
 
20-03-2019
Two chimneys of hot gas found around the central back hole
Thanks to the X-ray satellites Chandra and XMM-Newton, an international team including the Department of Astrophysics of CEA-Irfu has just discovered the existence of two bubbles of hot gas escaping to distances of about 500 light-years, on both sides of the massive black hole environment, in the center of our galaxy.
04-03-2019
The large ALMA interferometer reveals a population of galaxies not yet detected by the Hubble Space Telescope
An international team, led by researchers from the Department of Astrophysics/AIM Laboratory of CEA-Irfu has just highlighted a new population of very remote galaxies, which had so far escaped the deepest observations of the Universe. During the summer of 2016, at more than 5000 meters of altitude on the Chilean highlands, the antennas of the large interferometer ALMA (Atacama Large Millimeter/submillimeter Array) scrutinized for more than 20 hours one of the best studied regions of the sky.
27-01-2019
An international collaboration, involving the Astrophysics Department-Laboratory AIM of CEA irfu, participated in the study of an exoplanetary system, Kepler-107 and revealed an amazing distribution of its 4 planets of which two seem potentially resulting from a giant impact. Thanks to asteroseismology (the study of star vibrations) and the modeling of planetary transits, researchers have been able to determine the mass and radius of the central star and its planets with great precision.
21-01-2019
On November 29, 2018, the first version of the ECU software for the ECLAIRs instrument was delivered. This computer, called Gamma Camera Management and Scientific Processing Unit, will be set on the Franco-Chinese SVOM satellite, designed to study gamma-ray bursts. It will allow the management of the ECLAIRs instrument and the detection of gamma-ray bursts by the SVOM mission in real time on board.
21-01-2019
On November 29, 2018, the first version of the ECU software for the ECLAIRs instrument was delivered. This computer, called Gamma Camera Management and Scientific Processing Unit, will be set on the Franco-Chinese SVOM satellite, designed to study gamma-ray bursts. It will allow the management of the ECLAIRs instrument and the detection of gamma-ray bursts by the SVOM mission in real time on board.
 
15-05-2019
The predictions of nuclear properties based on a realistic description of the strong interaction is at the heart of the ab initio endeavour in low-energy nuclear theory. Ab initio calculations have long been limited to light nuclei or to nuclei with specific proton and neutron numbers. Theoreticians from Irfu/DPhN have developed novel ab initio methods that led to a significantly increase of the number of nuclei that can be accessed.
02-05-2019
An international collaboration led by the institutes of CEA-IRFU and of RIKEN (Japan) demonstrates, for the first time, the exceptional stability of the very-neutron rich nickel-78 nucleus and its doubly-magic character. The experiment at RIKEN was made possible by the unique combination of the MINOS device developed at CEA-Irfu and the very exotic beams produced by the RIBF facility of the Japanese accelerator.These results are published in Nature [Nat19].  
21-03-2019
The STEREO experiment releases new results based on the detection of about 65000 neutrinos at short distance from the research reactor of the ILL-Grenoble. The improved accuracy is rejecting the hypothesis of a 4th neutrino in a large fraction of the domain predicted from the reactor neutrino anomaly. Profiting from a good control of the detector response, STEREO now also releases its first absolute measurements of the neutrino rate and the spectrum shape.
 

 

Retour en haut