Highlights 2010

December 2010

The Double Chooz collaboration recently completed its neutrino detector which will see anti-neutrinos coming from the Chooz nuclear power plant in the French Ardennes. The experiment is now ready to take data in order to measure fundamental neutrino properties with important consequences for particle and astro-particle physics.             contacts:       Thierry LASSERRE Christian VEYSSIERE    
The hot gas found in stars produced by laser pulses
A major international collaboration [1], involving researchers from the CEA-IRFU Astrophysics Department, CEA-IRAMIS and CEA-DAM, has succeeded in measuring for the first time the effects of light absorption by nickel in high temperature plasmas similar to those found around Cepheid-type variable stars. These stars are important indicators of distance in the Universe. They exhibit a periodic pulsing behavior caused by sudden increases in the absorption of light by the hot gas surrounding the star.
At a meeting in Brussels of the NUPECC Committee(1) on December 9, the researchers presented their long term plan for maintaining the leading position currently enjoyed by European institutions in the field of nuclear physics. The Spiral2 project in Caen, a collaboration between the CNRS/IN2P3(2) and the CEA/DSM(3), is one of the projects already contributing to this European strategy.
High field magnetic resonance imaging at field strengths at or above 7 tesla appears to be one of the most promising techniques for the early detection of neurological pathologies. Currently beyond the reach of most MRI system manufacturers, this imaging technology is beset with new technological difficulties. The CEA Iseult project team (IRFU and I2BM) has now overcome one of these problems; the homogeneous excitation of atomic nuclei using parallel transmission.
The first lead-lead collision results have been published
After almost a year collecting data from proton-proton collisions, the LHC at CERN began the injection of lead ions at the beginning of November, with the first collisions obtained on November 8. The energy in the nucleon-nucleon center of mass is 2.76 TeV, around ten times greater than that achieved previously by the RHIC in Brookhaven USA. The first results from ALICE have been made available without delay.

November 2010

A team of physicists, engineers and technicians from IRFU are developing a new generation of MicroMegas trackers. The planned Compass II experiment at CERN, together with the Clas12 experiment at the Jefferson Lab, will impose new operational constraints preventing the current generation of trackers from working with nominal performance. Tests on a new generation of detectors have been carried out using particle beams generated at CERN.
In August 2010 at CERN in Geneva, a team of physicists from SEDI and SPP working in collaboration with a group from ETH-Zurich obtained the first successful results from a MicroMegas detector operating in a time projection chamber filled with pure cryogenic argon at a temperature of 87.2 kelvin.       
An international team of astronomers, including several French researchers, has just completed a precise measurement of the distance to five distant galaxies using the ESA Herschel Space Observatory together with ground-based data from the interferometer operated by the Institute for Millimetric Radioastronomy (IRAM)1 . The research team has shown that the light from these galaxies has travelled for around ten thousand million years before reaching Earth.

October 2010

    The instrument known as MUSETT1 detected its first heavy nuclei during a commissioning experiment that took place in early April 2010 at the GANIL2 accelerator in Caen. MUSETT was built for identifying very heavy elements: transfermium, which are the elements beyond fermium (Z=100).  Nuclear physicists are interested in these extreme state of matter for testing the theoretical models that describe the nuclei.
The most famous collision of galaxies decoded using ‘high-resolution’ simulations
‘High-resolution’ numerical simulations carried out by scientists at the Astrophysics Department of the CEA-Irfu/AIM  have just revealed that the most famous galactic collision ever, the Antennae collision, produces far more stars than observations suggested. When two galaxies meet, the resulting gas compression causes the ignition of new stars. Until now, it seemed that these new stars appeared only in high-density regions, mainly near the core of the collision.

September 2010

National press release 15.09.10
   The Planck satellite has just discovered a supercluster of galaxies thanks to its imprint on fossil radiation—witness to the first moments in the life of the Universe. This is a first for the satellite, which also revealed new clusters of galaxies with great precision.      These objects, which contain hundreds or thousands of galaxies, are the largest known structures in the Universe.

August 2010

Paris was the first to hear about the LHC's initial physics results
The 35th International Conference on High-Energy Physics was held at the Palais des Congrès in Paris from 22 to 28 July—an opportunity for the LHC teams to present their first results. IRFU is involved in three of the four major collaborative projects that have set up their detectors at the collision points in the ring: Alice, Atlas, and CMS. Our teams have contributed in particular to some fundamental analyses for the control of the detectors, whose performance has exceeded expectations.   
The CDF and D0 experiments announce their new results in the search for the Higgs Boson
Physicist working on the CDF and D0 experiments using Fermilab's Tevatron accelerator in Chicago, including scientists from IN2P3/CNRS and IRFU/CEA, announced their latest results on 26 July at the International Conference on High-Energy Physics (ICHEP 2010) in Paris. Their measurement further constrain the Higgs boson mass domain still open within the standard model of particle physics. This means that CDF and D0 have ruled out a Higgs Boson with a mass between 158 and 175 GeV/c2.

July 2010

The giant gas ring in Leo, formed when two galaxies collided
An international team led by astrophysicists from the Lyon Observatory (CRAL, CNRS/INSU, Université Lyon 1) and the AIM laboratory (CEA-Irfu, CNRS, Université Paris 7) has just shed some light on the origins of the giant gas ring in Leo.  The astrophysicists were able to detect an optical counterpart to this cloud, which corresponds to stars in formation, using the Canada-France-Hawaii telescope (INSU-CNRS, CNRC, U. Hawaii).
   The pion, predicted by Yukawa in 1935 and discovered in 1947, was the first of a family of particles called mesons: a family that has continued to grow ever since. Ordinary mesons consist of a quark and an antiquark. The theory of strong interaction also predicts the existence of more complex mesons, called ‘exotic' mesons. The existence of exotic mesons has not yet been formally proven, but scientists have been searching for them for over more than a decade.
  The ESS (European Spallation Source) will be the most powerful neutron source in the world. The increased intensity of neutron beams obtained by the spallation method and through the development of new observation methods will allow scientists to analyse and understand phenomena occurring on an atomic and molecular level. Construction of the ESS in Lund should begin soon, with a view to its being commissioned at the end of the decade. 

May 2010

Molecular clouds reveal a giant outburst of the supermassive black hole at the centre of the Galaxy
The central black hole of the Galaxy, today surprisingly quiet, has undergone, several hundred years ago, a violent phase of activity. This is the conclusion reached by an international team led by astrophysicists of the APC laboratory and including scientists of the Service d'Astrophysique of CEA-Irfu, by studying the high energy emission of molecular clouds located in the central regions of the Galaxy.
The D0 experiment at the Tevatron accelerator at Fermilab (Chicago), in which physicists from CEA/IRFU and CNRS/IN2P3 are involved, has measured a significant matter-antimatter _asymmetry_ in the behaviour of particles containing b quarks, known as B mesons (or beauty mesons) beyond the predictions of the standard model (the current theory of particle physics). This result has been submitted for publication in the Journal Physical Review D.
Promising scientific results for the largest space telescope
One year on from the launch of the Herschel European satellite, the European Space Agency (ESA) is carrying out an initial scientific assessment of the mission, starting with the first symposium of Herschel scientific results, held from 4th to 7th May on the ESTEC site in Noordwijk (Netherlands).The scientific community has been analyzing the initial data received since Herschel was declared 'science-ready' in September 2009.

April 2010

IRFU (the Institute for Research on the Fundamental Laws of the Universe) has created the first prototype of the Alexia system, an automatic solution preparation system containing the radioactive tracers required for medical imaging using the scintigraphy technique.   This project is based on a partnership between radiopharmacists from the Frederic Joliot hospital (SHFJ, DSV) and engineers from IRFU and LIST (DRT).
Supernovae will no longer escape from physicists!
The SNLS collaboration (Supernova Legacy Survey, at the Canada-France-Hawaii telescope) has just published a new method which allows the determination of the recession velocity of supernovae, those "standard candles" which have appeared in the universe throughout its history. The novelty of the method is its ability to study these cataclysmic explosions without needing to turn to spectroscopy, which requires too much observation time, even when using the planet's largest telescopes.
Thierry Lasserre, a physicist at IRFU, has received the Bronze medal in the CNRS awards for 2009
On April 14, Thierry Lasserre received the CNRS bronze medal from the new director of the In2p3, Jacques Martino. Since 1954, CNRS has awarded three medals each year to renowned researchers or promising young scientists. This Bronze Medal rewards a researcher's first work, which marks that person as a promising specialist in his or her field. The work of Thierry Lasserre concerned the most abundant massive particle in the universe: the neutrino.

March 2010

High resolution mapping of the first light in the Universe
Following its launch on 14 May 2009, the Planck satellite [1] has been continually observing the celestial vault and has mapped the entire sky since 13 August to obtain the first very high resolution image of the dawn of the universe. The Planck satellite has just finished its first sky coverage. The preliminary images reveal undreamed of details of emissions of gas and dust in our own galaxy.
The LHC is about to start up for an initial two-year period of data acquisition which will produce a flow rate and volume of data among the largest that the man has ever needed to process. During recent tests under real conditions, the Paris region research grid (GRIF) was able to provide the required performance, allowing physicists to access reconstructed data only four hours after it had been recorded at CERN. In 2010, the volume of data to process will be 100 times larger.
The first asteroseismology results from the KEPLER satellite
The space mission KEPLER, launched in March 2009 to investigate exoplanets, has just delivered its first results on the vibrations of stars. Several international teams of scientists, including members of the Astrophysics Division (CEA-Irfu) have shown, using this first data, that starquakes not only make it possible to probe the interior of stars but they also allow determination of their age and tell us whether or not the stars belong to a cluster.

February 2010

The influence of particle acceleration
For the first time, the events following the explosion of a star have now been simulated in three dimensions by a team from the Astrophysics Division of CEA-IRFU. The simulation includes the significant contribution of particles accelerated by the shock that is produced in the expansion. Until now, these complex simulations have concentrated either on calculating movement of the expanding ejected material, or on calculating particle acceleration.
The Phenix and Star collaborations, which include physicists from CEA-IRFU and CNRS-IN2P3, have announced major discoveries on the nature of the quark-gluon plasma. These conclusive results, which advance our understanding of nuclear material subjected to extreme conditions, shed new light on the birth of the universe. They have been published in the journal Physical Review Letters.  
Increasing the available laser power results in an high intense production of secondary particles (photons, neutrons). These constitute a radiological risk which needs to be assessed and controlled. Hence, fifty years after the production of the first laser, the use of the new generation research lasers requires a new expertise, specific to radiological risks.     IRFU, which has the knowledge required to meet this need, recently finalised two important studies.
Forest fires are a constant danger, particularly for arid countries. They act as a brake on economic development and are a threat to environment, by the large scale release of greenhouse gases as well as by the destruction of ecosystems.
In Japan at the end of January 2010, the detectors of the Tokai to Superkamiokande (T2K, [ti:tu:kei]), developed at Saclay, observed their first neutrinos. These detectors consist of two large chambers where the tracks of charged particles are able to be reconstructed and the neutrino beam can be characterized. In this experiment, neutrinos are created by a proton beam coming from the Tokai accelerator.
The CHyMENE project (Cible d'Hydrogène Mince pour l'Etude des Noyaux Exotiques -Thin hydrogen target for the study of exotic nuclei) has the ambitious goal of producing a thin target of pure hydrogen, without using a container, suitable for experiments using the low-energy heavy ion beam planned for SPIRAL2.     A team from IRFU (SPhN and SACM) and from l'Inac/SBT have recently applied cryogenic techniques to successfully produce a ribbon of solid hydrogen 100 μm thick.
A company from the Vosges Department in France, NEOTEC, received the 2009 "Outstanding Implementations" award, at the International MIDEST Exhibition attended by the Industry Minister, Christian Estrosi, for their production of very special chambers. This equipment forms part of an important component of the Double-Chooz experiment which, before the end of the year, will measure neutrinos emitted by the reactor at the Chooz nuclear power station in the Ardennes.  

January 2010

  Since 1995, the Accelerators, Cryogenics and Magnetism Division (SACM) has initiated a software development  for designing structures and simulating beam transport in accelerators. Since 2000, these codes have been distributed to many laboratories and companies around the world. This professional software suite is now distributed under license from the CEA. 


Retour en haut