Aug 03, 2020
Photon-photon elastic scattering is a very rare phenomenon in which two real photons interact producing a new real photon pair. The direct observation of this process at high energy, impossible during decades, was done by ATLAS [1] and CMS [2] experiment at CERN between 2016 and 2019. These successes have led the two collaborations to strengthen their involvement in this new field, leading to a new measurement, currently being published by the ATLAS experiment [3].
Jun 19, 2018
The ATLAS and CMS collaborations, involving teams from CEA/IRFU and CNRS/IN2P3, announced on 4 June 2018 at the LHCP conference the direct observation of the coupling of the quark top to the Higgs boson. Studying the interaction between the Higgs boson and the heaviest elementary particle known, the quark top, is a way of investigating the effects of new physics, which must take over from the standard model.
Nov 09, 2017
The LHC's Atlas collaboration at Cern has observed a rare process: the production of Higgs bosons in association with a top quark and top antiquark pair. This work, supervised by an Irfu researcher, opens up perspectives on the study of the Higgs mechanism that gives mass to particles.
Oct 19, 2017
Data collected at the LHC (Cern) were processed to provide the most accurate assessment of an asymmetry in top quark and top antiquark production. The result is that the measured value is compatible with the prediction of the standard particle model.
Aug 16, 2017
The ATLAS collaboration at CERN's LHC has found the first direct evidence for the rare process of high-energy light-by-light scattering, where two photons interact and change direction. This phenomenon was predicted several decades ago by quantum electrodynamics, i.e. the quantum theory of electromagnetism.
Jul 07, 2017
Physicists from IRFU have announced that no "big brother" of the Higgs boson has been detected at the ATLAS experiment at CERN's LHC. Their results rely on new analyzes with higher sensitivity.
Feb 08, 2017
Light-by-light scattering, predicted in 1936, was observed for the first time by the ATLAS experiment at the LHC, thanks to "ultra-peripheral" collisions of lead ions. It is of particular interest to physicists, as it is the result of interactions between a vacuum and intense electromagnetic fields.

 

Retour en haut