Atlas is one of the general purpose detectors which started operation in 2008 at the the CERN proton collider, to study the Higgs boson. Goals: Unifying the elementary constituants of matter and their interactions. Atlas is one of the two general purpose detectors installed at the LHC which started operation in 2008. Atlas brings experimental physics into new territory. Discovering new processes and particles that change our understanding of energy and matter would be most exciting.

ATLAS-Muon Spectrometer

ATLAS
R3B
Reaction studies with Relativistic Radioactive Beams
Goals of the experiment    The R3B experiment is part of the FAIR project (Facility for Antiproton and Ion Research, http://www.gsi.de/fair) to be built at GSI (Darmstadt, Germany). The FAIR project gathers different physics around a common facility: exotic nuclei at low and high energy, hadronic physics with proton – antiproton collisions, relativistic heavy-ion collisions (a few 10 GeV per nucleon), plasma physics and atomic physics.

COCOTIER

Gravitational Behaviour of Antihydrogen at Rest
Aims: One of the fundamental questions of today’s physics concerns the action of gravity upon antimatter. No experimental direct measurement has ever been successfully performed with antimatter particles. CERN has thus launched a research program with the Antiproton Decelerator (AD) allowing to prepare a measurement of the effect of gravity on antihydrogen atoms. The primary aim of this experiment is to determine how antimatter reacts to gravity.

SELMA

SOPHI

GBAR
ALICE
The ALICE experiment is devoted to the study of nuclear matter under extreme conditions of temperature and density. It is specially designed to test the fundamental theory of the strong interaction, Quantum Chromodynamics (QCD), which predicts the existence of this new state of matter, the quark-gluon plasma (QGP). Objectives There are still some open question concerning the formation of our Universe.
BOSS, eBOSS, DESI
Most of the content of the Universe, about 70%, is dominated by an energetic component that is neither matter nor radiation: dark energy. This mysterious component, first observed in 1998 with supernovae, revolutionized our vision of the evolution of the Universe and is one of the major discoveries of the end of the 20th century.  A characteristic scale of about 500 million light-years, acting as a "standard meter", is present in the distribution of matter on a cosmic scale.
BAO
BTD (Beam Tracking Detector)
Project context The BTD project was developed in the framework of experiments aiming at the spectroscopy studies of radioactive nuclei using gamma-radiation and light particles in GANIL, mainly with SPIRAL and then SPIRAL2 beams. The purpose of these experiments is to study the structure of exotic nuclei in order to better understand the interactions that bind protons and neutrons and their reactions to different excitation modes (temperature, spin...).
A thin cryogenic target for the studies of exotic nuclei
The CHyMENE project (Cible d'Hydrogène Mince pour l'Etude des Noyaux Exotiques - a thin cryogenic target for the studies of exotic nuclei) is part of the instrumentation necessary for the exploitation of the low energy beams (~ 5 to 25 MeV/n), such as SPIRAL2 beams. The aim is to develop a thin cryogenic target of pure hydrogen (H2 or D2), the characteristics of which will be well adapted to the conditions of future direct reaction experiments.
CHyMENE
CLAS12
Deeply Virtual Compton Scattering experiment at  Jefferson Lab Hall B , with CLAS12, large acceptance spectrometer. Goals: Theoretical concepts as Generalized Parton Distributions (GPD), enable to probe with a dramatic accuracy the nucleon structure, and access the quark confinement in hadrons.
A new generation observatory to explore the high energy Universe. Une nouvelle génération d'observatoire pour explorer l'Univers à haute énergie.
CTA (Cherenkov Telescope Array)
ESS: The European Spallation Source
The linear accelerator includes a low-energy section (E≤ 90MeV) with a Radio Frequency Quadrupole (RFQ), a Drift Tube Linac (DTL), and a high-energy section made up of superconducting cavities that are designed to accelerate protons up to 2 GeV. Superconducting cavities can be divided into three categories. The first consists of spoke cavities, operating at 352 MHz and optimized for proton beams at half the speed of light (β= v/c = 0.50), with energies between 90 MeV and 216 MeV.
Tools development to characterize exoplanets’ atmospheres  
ExoplANETS-A
FERMI-GLAST
FERMI-GLAST: A big gamma-ray telescope
FERMI-GLAST   GLAST successfully launched on 11th June, 2008 : see Actualités The GLAST telescope was renamed the FERMI telescope after its launch on August 26th, 2008 as a tribute to the famous Italian physicist. Fermi : the Gamma-ray Large Area Space Telescope Fermi is a NASA observatory dedicated to the study of gamma rays in the energy band between 20 MeV and 300 GeV.
This experiment aims to provide accurate data on actinide neutron-induced fission fragment characteristics (mass distributions, kinetic energy) and neutron multiplicities in the energy range between 500 keV and 20 MeV. Those data are of particular interest for the nuclear community in view of the development of the fast reactor technology. For thermal neutron energies, a lot of fission reaction data are available. Some of them are still partial or suffer from insufficient accuracy.
Fission studies with the FALSTAFF fission fragment spectrometer
Fulis rotating Target
Objectives While the heaviest element on earth is 238-uranium (with traces of Pu and Np in natural nuclear reactors) whose lifetime is 5 billion years, the last 60 years have seen the synthesis of dozens of new elements in laboratory, with shorter lifetimes. In 2007, The heaviest elements which has been named is the Darmstadtium, with 111 protons. Z=112 has also been claimed, as well as Z=113 from a japanese team.
Whole body MRI magnet with high field
The technique of magnetic resonance imaging (MRI) is a diagnostic tool for research and neuroscience. Its evolution led to instruments for whole body operating at very high field from 0.5 to 1.5 tesla for medical examinations and 3 to 5 tesla for research instruments. Objectives Neurospin project aims to develop a centre with 4 MRI systems: o Clinic Research : MRI 3T and 7T (Siemens) o Pre Clinic Research : MRI 17T, small aperture (Bruker) o Clinic Research : MRI 11.
ISEULT
ITER
 Objective The objective of the ITER (« way » in latine) project is to go through the steps still necessary to enable the construction of a prototype producing electricity through nuclear fusion in the years 2050's.    Context  Research activities in the field of fusion:     Started in 1958, the fusion activity in France has been boosted with the construction and the operation of the Tore-Supra tokamak, built in Cadarache between 1983 and 1988.
Ab initio modelling of extreme supernova explosions and gamma-ray bursts
Ttitle of ERC project : Exploding stars from first principles: MAGnetars as engines of hypernovae and gamma-ray BURSTs PI : Jérôme Guilet    
MagBURST
Megapie
Megawatt pilot experiment
  Objectives: Megapie (Megawatt pilot experiment) is an international project having as objectives to design, build, test and decomission the first lead-bismuth liquid spallation target functioning under 1 MW deposited power. This target is used as neutron source. Neutrons are produced by the interaction of high intensity proton beam (590 MeV of energy) on the target.
Objectives: The objective of the Mini-INCA project is to study minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. The fission process is the best way to reduce radiotoxicity and also to use the total amount of energy contain within heavy nuclei.
Mini Inca
MINOS
Scientific Issues and Project Framework The MINOS project aims at performing the spectroscopy of very exotic nuclei produced by fragmentation at the radioactive ion beam facilities such as RIKEN or GSI / FAIR. The structure of the targeted atomic nuclei should allow us to bring strong constraints on the nuclear interaction acting between nucleons in the nucleus.
MUSETT: A segmented Si array for Recoil-Decay-Tagging studies at VAMOS
A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a gamma-ray array at the target position. This device consists of four 10x10 cm2 Si detectors each, to obtain a total detection area of  40 x 10 cm2.  
MUSETT
nTOF
Goal This activity is focused on the study of neutron-induced reactions for nuclear astrophysics (stellar and big bang nucleosynthesis), for nuclear structure (levels density) and for nuclear technologies (current and innovative nuclear reactors, transmutation of nuclear wastes). This program contributes to national and international efforts aiming at nuclear data improvement.
The PEBBLES project consists of developing an innovative methodology to characterise the properties of dust around very young stars in the process of forming their proto-planetary disks. Dust is one of the key elements in the physical processes regulating the formation of stars and their planetary systems, but recent observations are overturning the models used until now to describe its evolution from submicron grains to pebbles.
PEBBLES
PLATO
A space observatory developed by ESA for the characterization of exo-planetary systems launched in late 2026. ESA stellar exo-planet system characterization to be launched at the end of 2026.  
Irfu is part of the ScanPyramids mission aiming to "scan" the great pyramids of Egypt and in particular the pyramid of Cheops. Created in 2015 under the authority of the Egyptian Ministry of Antiquities, the project combines various non-invasive and non-destructive techniques in an attempt to reveal the presence of little-known internal structures in ancient monuments and to better understand both their design and construction.
ScanPyramids
SNLS : SuperNova Legacy Survey
SNLS aimed at detecting type Ia supernovae at high redshift for cosmological studies. It belongs to the second generation of experiments in that field, launched after the unexpected discovery of the late acceleration of the Universe expansion rate by the first programs of type Ia supernovae at the end of the1990s. SNLS used the Canada-France-Hawaii telescope (CFHT) of 3.6 m located on the Mauna Kea mountain in Hawaii. It was equipped with MegaCam, the large field CCD camera designed and built at Irfu.
The objective of the Solar Orbiter mission is to understand the Sun's influence on the heliosphere (its magnetic cocoon), in order to understand how our star influences our solar system.
Solar Orbiter
Spectroscopic atlas of the Spitzer infrared telescope
Publication of the pipeline and complete database in open-source, free-access and offline formats
NASA's Spitzer space telescope, JWST's predecessor, was a very successful mission, observing in particular the spectra of several tens of thousands of sources at wavelengths ranging from around 5µm to 38µm. These observations complement JWST/MIRI data for long-wavelength diagnostics, and provide valuable diagnostics in conjunction with JWST or in preparation for future infrared missions.
Understanding the physical mechanisms underlying the eruptive activity of the Sun and its stellar twins
WHOLESUN

 

Retour en haut