Niobium is the metal of choice for superconducting radio-frequency cavities for the future International Linear Collider. We present the results of atomic-scale characterization of the oxidation of niobium utilizing local-electrode atom-probe tomography employing picosecond laser pulsing. Laser pulsing is utilized to prevent a tip from fracturing as a buried niobium oxide/niobium interface is dissected on an atom-by-atom basis. The thickness of niobium oxide is about 15 nm, the root-mean-square chemical roughness is 0.4 nm, and the composition is close to Nb2O5, which is an insulator, with an interstitial oxygen concentration profile in Nb extending to a depth of 12 nm. |