BSMNu: the path to the New Physics discovery

S.Bolognesi (IRFU) and A.Giuliani (CSNSM) for the BSMNu group (CSNSM, IPhT, IRFU, LAL, LLR)

Neutrinos as door to New Physics

The SM cannot answer to many fundamental questions in cosmology and HEP Similarly, to the discovery of Fermi scale with nuclear β-decays, we are now on a fishing expedition to the next energy scale of the necessary New Physics:

Neutrinos as door to New Physics

The SM cannot answer to many fundamental questions in cosmology and HEP Similarly, to the discovery of Fermi scale with nuclear β-decays, we are now on a fishing expedition to the next energy scale of the necessary New Physics:

• Expansion of Lagrangian in terms of NP energy scale (Λ_{uv}): $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda_{UV}}\mathcal{L}_5 + \dots$

 \mathcal{L}_{SM} SM as effective theory valid until UV cutoff

The only 5th order operator possible according to fundamental symmetries: neutrino (Majorana!) mass is necessarily the first order effect of NP!!!

How v allows to reach such high-energy scale ?

- Sensitive to very tiny effects thanks to interferometry (i.e neutrino oscillations)! Unique tool to study very high energy scale (today $\Lambda \sim 10^{14}$ GeV)
 - \rightarrow What is the New Symmetry hidden behind the mass and flavour mixing? (Characterization of the PMNS matrix similarly to the CKM effort)

 \rightarrow Search of **CP violation in the leptonic sector** (related with matter/antimatter asymmetry in the Universe)

How v allows to reach such high-energy scale ?

- Sensitive to very tiny effects thanks to interferometry (i.e neutrino oscillations)! Unique tool to study very high energy scale (today $\Lambda \sim 10^{14}$ GeV)
 - \rightarrow What is the New Symmetry hidden behind the mass and flavour mixing? (Characterization of the PMNS matrix similarly to the CKM effort)

 \rightarrow Search of **CP violation in the leptonic sector** (related with matter/antimatter asymmetry in the Universe)

 This NP first order effect calls for the Majorana nature of neutrinos which naturally explain smalness of neutrino masses (special case: Seesaw mechanism)

$$\frac{1}{\Lambda_{UV}}\mathcal{L}_5 = \frac{v^2}{\Lambda_{UV}}\nu\nu. \qquad \frac{246^2}{10^{15}}GeV \approx 10^{-2}eV$$

→ New type of fundamental particle

 \rightarrow Discovery of **lepton number violation** (accidental conservation in SM: no symmetry supporting it)

→ Naturally emerging in leptogenesis scenarios to create matter/antimatter asymmetry

How v allows to reach such high-energy scale ?

- Sensitive to very tiny effects thanks to interferometry (i.e neutrino oscillations)! Unique tool to study very high energy scale (today $\Lambda \sim 10^{14}$ GeV)
 - \rightarrow What is the New Symmetry hidden behind the mass and flavour mixing? (Characterization of the PMNS matrix similarly to the CKM effort)

 \rightarrow Search of **CP violation in the leptonic sector** (related with matter/antimatter asymmetry in the Universe)

 This NP first order effect calls for the Majorana nature of neutrinos which naturally explain smallness of neutrino masses (special case: Seesaw mechanism)

$$\frac{1}{\Lambda_{UV}}\mathcal{L}_5 = \frac{v^2}{\Lambda_{UV}}\nu\nu. \qquad \frac{246^2}{10^{15}}GeV \approx 10^{-2}eV$$

→ New type of fundamental particle

 \rightarrow Discovery of **lepton number violation** (accidental conservation in SM: no symmetry supporting it)

- → Naturally emerging in **leptogenesis scenarios to create matter/antimatter asymmetry**
- Peculiar nature of v and being in direct contact with Λ_{UV}: natural to expect new type of interactions for neutrinos: Non Standard Interactions

Indirect BSM limits: from oscillation experiments at large distances

■ Direct BSM effects: suppressed by indirect limits from SM precision → high statistics sources: near to reactors/accelerators or large masses

Indirect BSM limits: from oscillation experiments at large distances

Indirect BSM limits: from oscillation experiments at large distances

Indirect BSM limits: from oscillation experiments at large distances

- Direct BSM effects: suppressed by indirect limits from SM precision:
 - very large masses with ultra-low background: $0\nu\beta\beta$

Indirect BSM limits: from oscillation experiments at large distances

- **Direct BSM effects:** suppressed by indirect limits from SM precision:
 - requires large statistics of neutrinos \rightarrow CENNS detectors very close to reactors

The BSM-Nu consortium

- BSMNu includes groups which are already used to work together very effectively (eg DPhP-LLR for T2HK, CSNSM-LAL-DPhP for bolometers ,...) and new collaborations triggered by recent involvements in future experiments (DPhP-LAL for DUNE)
- The size and complexity of next generation of experiments (JUNO, DUNE, T2HK, CUPID) requires critical mass to reach visibility
- Nu physics as door to NP requires a coherent and complete understanding of the neutrino sector (eg: different mass generation mechanisms have phenomenological consequences everywhere) BSMNu will constitute a very new kind of group in the field (probably the first of many worldwide)

Phys.Rev. D94 (2016) no.5, 053007

BSM-Nu project in a glimpse

The last row is the list of topics that BSMNu project will directly attack (\rightarrow next slides)

PMNS characterization

Why such (unexpected) shape? → constrain of NP standing behind flavour mixing pattern

Combination of oscillation experiments:

Examples of model predictions:

3σ

 2σ

Discrete flavour symmetries → neutrino mixing sum-rules

TBM

• GRA

• GRB

• HG

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

 $\sin^2 \theta_{12}^{\nu}$

Eur.Phys.J. C78 (2018) no.4, 286

• Best fit

Littlest Seesaw model with flavour symmetry

PMNS unitarity and NSI

 $UU^{\dagger} = U^{\dagger}U = I \implies \text{many equations!!}$ $|U_{l1}|^{2} + |U_{l2}|^{2} + |U_{l3}|^{2} = 1$

- Exploring unitarity from different rows (and including CPV as needed) → best limit expected from electron top row: θ_{13} from reactors and θ_{12} from JUNO
- Phenomenology behind non-unitarity: NSI (Important degeneracy of NSI with standard PMNS signatures of MH and δ_{CP})
 - NSI in NC: affecting LBL results through matter effects → can be constrained with CENNS experiments and with combination of multiple baselines/energies
 - NSI in CC: affecting oscillation results at production and detection point → can be constrained with near detector measurements

PMNS characterization and direct searches: BSMNu plans

The PMNS characterization and its link to the direct BSM search (0nbb, NSI) is the core of the BSMNu project:

- JUNO sensitivity to θ_{12} to
 - \rightarrow constrain parameter space for 0nbb
 - → test PMNS unitarity through ERU

WP2: S.Lavignac, L.Simard, A.Cabrera

Comment to pre-proposition → phenomonology contribution reinforced

- Evaluate NSI limits using synergy between CENNS and LBL experiments:
 - \rightarrow with DUNE atmospheric data
 - \rightarrow with DUNE near detector data

But to get there we need to:

- have good control of systematic uncertainties (WP4)
- develope highly capable detectors (WP4-5)

WP3: S.Lavignac, J.Coelho, M.Vivier

-10

18

50

 $N_{\rm PE}$

Nuclear physics: BSMNu plans

- The modeling of neutrino-nucleus scattering is the source of the dominant systematic for the T2(H)K and DUNE
 - Need for new,improved models: implementation in Monte-Carlo of SuperScaling model and INCL cascade for precise predictions of outgoing nucleons → unbiased estimation of neutrino energy from final state particles
 - Need for new performant **near detectors** to measure nuclear effects and constrain such systematic (see next slide)
 - **Comparison between T2(H)K and DUNE** provide strong constrain on systematics: in the study of PMNS with combined experiments we will investigate such complementarity (working example: T2K-NOVA task-force)

Important in future to interpret a possible Onbb observation and with high stat CENNS: invitation of nuclear physicist (M.Martini) to investigate the connection with Onbb and CENNS

WP4: S.Bolognesi, M.Buizza-Avanzini, A.Letourneau

Near detector design

■ Enabling measurement of protons (and pions/muons) with very low momentum and neutrons → much better reconstruction of neutrino energy

T2(H)K near detector upgrade (ND280) to be installed in 2021

- Characterization of MicroMegas resistivity
- Commissioning of ND280 upgrade
- Setup of first oscillation analysis with data from upgraded detector

Proposal of DUNE near detector (3DST): the same detector inside the KLOE magnet

R&D to adapt to new geometry and magnetic field

WP4: A.Delbart, O.Drapier, S.Hassani

Bolometric technology in BSMNu

Both pure and hybrid bolometric detectors are used in BSMNu

BSMNu organization

5 workshops: kick-off + 4 general annual meetings (2days, in different labo each year)

- detailed report of each activity
- focus on cross-topics and expertise sharing
 - → pedagogical communication aiming to enlarge the neutrino community
- invitation of internationally renowned neutrino physicists
 - $\rightarrow\,$ enhance the visibility of P2IO and of the neutrino community in it
- 4 P2IO seminars at different laboratories:
 - Bolometers for ultra-low background neutrino physics
 - Nuclear physics for neutrinos
 - Search for BSM physics in the neutrino sector
 - Summary of the BSMNu studies
- Various sabbatical stays expected (M.Barbaro, M.Martini, H.Nunokawa)
- Monthly meetings between all the WP responsibles: follow-up of the deliverables + coordination for cross-WP/labo topics (final written report for each deliverable)

Comment pre-proposition: WP were useful to organize the deliverables in the document \rightarrow real work all in common 22 (intricated schema!) using common PhD and postdoc

BSMNu allocated fundings

		Euros	Main lab		
WP1	Workshops/invitation	20k	ALL		
WP2	Postdoc	80k	DPhP-LLR (LBL)		
	Thesis	100k	LLR – (DphP) (LBL)		
	Thesis	100k	DPhN -DPhP (LBL/Theory)		
	ND prototypes	30k	DEDIP – DPhP (LBL)		
WP3	Postdoc	80k	LAL-IPhT (JUNO/Theory)		
	Postdoc	80k	LAL-IPhT (LBL/Theory)		
WP4	Thesis	100k	LAL (LBL)		
	Postdoc	80k	DPhP (CENNS)		
WP5	Postdoc	80k	DPhP-LAL (0nbb)		
	bolometers	80k	DPhP (0nbb)		
	bolometers	80k	CSNSM (CENNS)		
	Postdoc	80k	CSNSM-DPhP (bolometers)		
Total		990k			
		(-17% wrt to original request)			

BSMNu people (1)

Updated table covering the participation to the physics and experiments of BSMNu project. The percentages in the original documents were covering for many people only the time to be devoted to meetings, workshops, PhD/postdoc guidance and coordination of the project

1	Name	Laboratory	Involvement	Role				
2	L. Bergé	CSNSM	50% (P)	participating to	WG 5			
3	S. Bolognesi	DPhP	90% (P)	responsible of the project, co-supervisor thesis 1 and 2			1 and 2	
4	M. Bongrand	LAL	10% (P)	participating to	WG3			
5	M. Buizza Avanzini	LLR	70% (P)	responsible WC	62, supervisor th	esis 1		
6	A. Cabrera	LAL	50% (P)	supervisor post	doc 2			
7	J. Coelho	LAL	80% (P)	responsible W0	64, supervisor th	iesis 3		
8	P. Colas	DPhP	70% (P)	participating to	WG2			
9	J-C. David	DPhN	20% (P)	participating to	WG2			
10	O. Drapier	LLR	30% (P)	co-supervisor p	ostdoc 1			
11	A. Delbart	DEDIP	20% (P)	participating to	WG2			
12	L. Dumoulin	CSNSM	60% (P)	participating to	WG5			
13	S. Emery	DPhP	50% (P)	participating to	WG2			
14	G.Eurin	DPhP	50% (P)	participating to	WG2			
15	F. Ferri	DPhP	30% (P)	supervisor post	doc 5			
16	A. Giuliani	CSNSM	90% (P)	responsible of	the project, co-s	upervisor thesis	3, postdoc 4	
17	Ph. Gras	DEDIP	30% (P)	participating to	WG5			

BSMNu people (2)

18	S. Hassani	DPhP	80% (P)	responsible WG2, supervisor po	ostdoc 1			0
19	D. Helis	DPhP	90% (NP)	participating to WG5				U
20	T. Lasserre	DPhP	20% (P)	participating WG4				
21	S. Lavignac	IPhT	60% (P)	responsible WG3, co-supervisor postdocs 2, supervisor postdoc 3				
22	A. Letourneau	DPhN	30% (P)	supervisor thesis 2				
23	P. Loaiza	LAL	30% (P)	co-supervisor postdoc 5				
24	D. Lhuiller	DPhN	30% (P)	supporting WG4				
25	D. Mancusi	SERMA	10% (P)	supporting WG2				
26	P. de Marcillac	CSNSM	80% (P)	supporting WG5				
27	R. Mariam	CSNSM	100 (NP)	supporting WG5				
28	S. Marnieros	CSNSM	60% (P)	supervisor postdoc 6				
29	B. Mauri	DPhP	100% (NP)	participating to WG 5				
30	G. Minier	DIS	30% (P)	participating to WG 5				
31	C. Nones	DPhP	90% (P)	responsible WG5, co-supervisor postdoc 6				
32	E. Olivieri	CSNSM	90% (P)	participating to WG 5				
33	C. Oriol	CSNSM	20% (P)	participating to WG5				
34	D. Poda	CSNSM	90% (P)	participating to WG5				
35	JA. Scarpaci	CSNSM	80% (P)	participating to WG5				
36	L. Simard	LAL	40% (P)	responsible WG3, co-superviso	r postdoc 3			
37	L. Scola	DIS	20% (P)	participating to WG 4 and 5				
38	M. Vivier	DPhP	50% (P)	responsible WG4, supervisor po	ostdoc 4			
39	A. Zolotorova	CSNSM	100% (NP)	participating to WG5				

~

Conclusions

- Very high chances that the next major HEP discovery is in the neutrino sector In any case sure physics output in the next generation of experiments:
 - PMNS characterization to high precision, mass hierarchy determination and CP violation in leptons
 - Onbb and NSI search: limits to important NP models and defining the road to future discovery
 - R&D of highly capable detectors
- The neutrino community musts increase and work coherently to face such challenges:

BSM-Nu will be the first group to address this physics as a whole: the initiator of a new way to NP (eg: EWKWG @ LEP, CKM group, ...)