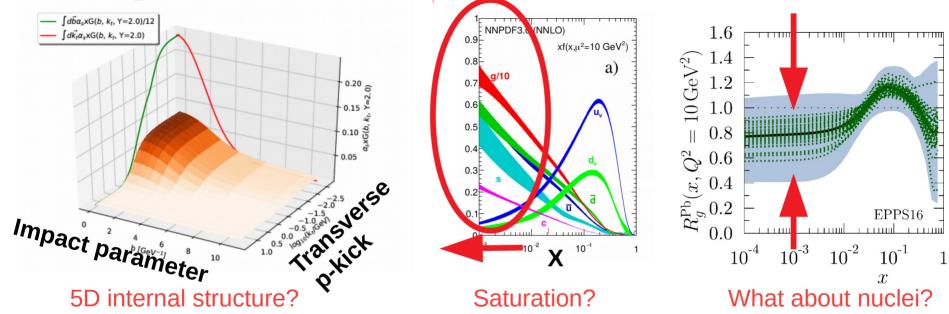
# P2IO Flagship proposal

INC

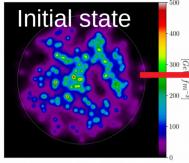

ORSAY

Final selection hearing 14<sup>th</sup> of November

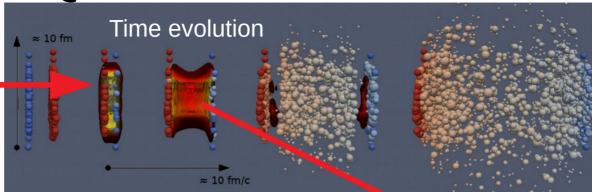
Michael Winn for the consortium



# The quest for hadron structure




#### Understand the dominant matter constituents: mass, spin, interactions


- Multi-dimensional: gluons scarcely explored
- Gluon saturation at low-x: successful description, but not unique
- Nuclear structure: scarce even more for gluons

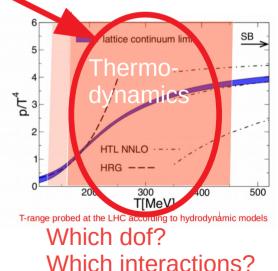
> new concepts + new tools + precision + new kinematic regimes

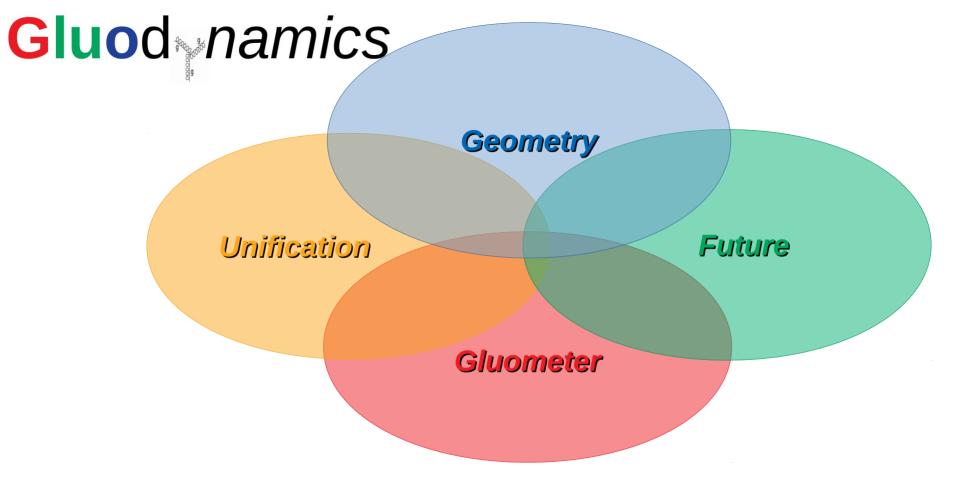
# The quest for QCD fluids



#### Hydro in pPb/pp? Other effects?




How connect initial state to hydro?


#### Characterize Quark-Gluon Plasma & initial state of strong gluon fields

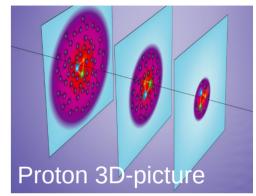
- Multiscale probes: quarkonium & jets
- QGP property extraction: limited by initial geometry & density
- Fluid-like behaviour in proton-lead/proton-proton:
  - Hadron structure central
  - Hadron-hadron & electron-hadron collisions: unified description?
  - > new observables +

new concepts

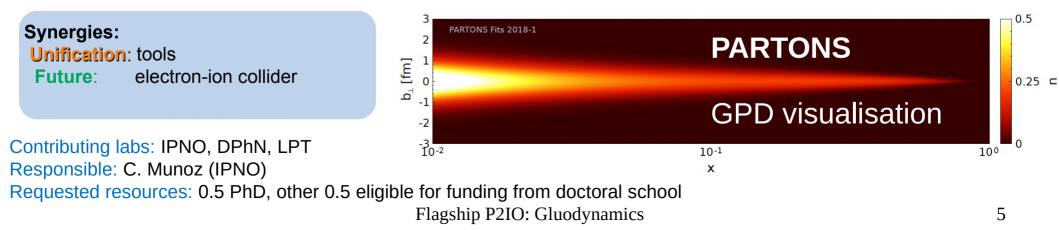
#### + precision + new tools






Decipher **gluons** as (the) source of **geometry & forces** inside the smallest and **hottest droplets** formed on earth and in the most important **building block of matter, the proton**.

# Gluod namics Experiment nucleon structure


#### Geometry Unification **Future**

#### 3D nucleon structure via Generalized Parton Distributions with unprecedented precision

- Deeply Virtual Compton Scattering (DVCS) & Deeply Virtual Meson Production (DVMP) at Jefferson Lab with several set-ups:
  - > Q<sup>2</sup>-Scaling tests of DVCS
  - Proton & neutron DVCS + DVMP unpolarized & longitudinally polarized
  - Transition Distribution Amplitudes introduced by P2IO theorists



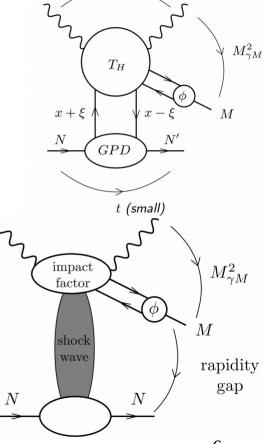
World expert team with ample experience in analysis of exclusive processes



## Gluod namics Theory nucleon structure



 $\gamma^{(*)} \: N \to \gamma {\rm \ Meson \ } N'$  : a new way to access Generalized Parton Distributions


- Access to elusive transversity Generalised Parton Distributions
  - > NLO & power corrections
  - Predictions for experiment & inclusion in PARTONS
  - Color Glass Condensate description for precision in saturation

Team of world experts with strong links to phenomenology & experimentalists to realise a novel idea from A to Z

#### Synergies:

Geometry:experiment nucleonUnification:tools & spaceFuture:electron-ion collider

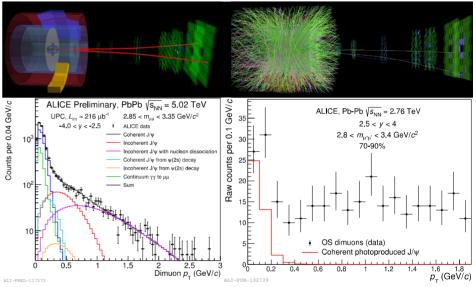
Contributing labs: LPT, CPHT, DPhN, IPNO + interested exp. groups (ALICE, JLAB, EIC) Responsible: S. Wallon (LPT) Requested resources: 2 years of postdoc



Nuclear geometry



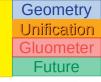
# Coherent Photoproduction in peripheral collisions: a new tool to scrutinize nuclear geometry & the QGP


New information on gluon dynamics in nuclei
 nuclear GPDs sensitivity investigation

**Gluod** *namics* 

- ALICE unique: forward, mid-, semi-forward rapidity
- Timely: high statistics Pb-Pb Run3 data & continuous data taking mode (TPC + muon)
  - > J/ψ cross sections over large rapidity range
  - > J/ $\psi$  t-slope at central rapidity: Pb geometry

Team of pioneers, instrumentation & analysis experts in close contact with colleagues from JLAB & theory


Contributing labs: IPNO, DPhN Responsible: L. Massacrier (IPNO) Requested resources: 2 years of postdoc



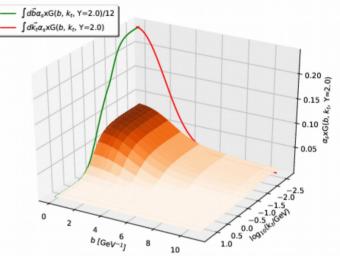
| Synergies:   |                     |
|--------------|---------------------|
| Gluometer:   | forcemeter collider |
| Unification: | time, space         |
| Geometry:    | experiment nucleon  |



## **Unification space**



## How transverse momentum distributions are correlated with spatial distributions ?


- Unification tool: Wigner functions
  - Arise naturally in small-x formalisms
  - study in Mueller's dipole model and/or CGC
  - much-needed modeling and numerical tools
- Anisotropic particle production in p+A and p+p collisions due to:
  - > QCD dynamics of the initial state (encoded in TMDs) ?
  - Hydro response to initial geometric anisotropies (GPDs) ?
  - Crucial knowledge of momentum/spatial correlations missing



Pre-hydro initial conditions described in the language of hadron structure for the first time

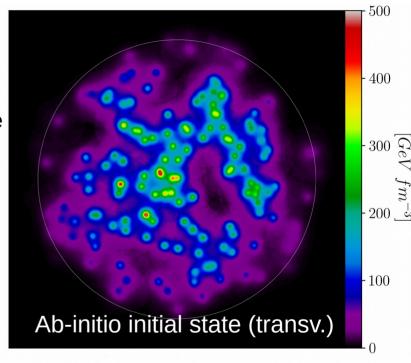
World-leading theory communities on all aspects

Contributing labs: CPHT, LPT, IPhT Responsible: C. Marquet (CPHT) Requested resources: 2 years of postdoc



**Gluon Wigner function** 

# Synergies:Unification:time, toolsGeometry:nucleon and nuclearFuture:electron-ion collider


## **Unification time**

# Unification of initial state and hydrodynamic simulations of heavy-ion collisions

- Deliver a 3D event-generator:
  - Generalise recent initial-state model with rapidity dependence
  - > Use transport equations to "thermalize" the initial state
  - Interface with hard probes (e.g. jet quenching MC)
- Look into phenomenological consequences:
  - First-principle description of longitudinal correlations
  - Study various fluctuation measures (e.g. mean pT)
- Exploratory investigation: what imprints of initial fluctuations can be uncovered with jet quenching/substructure ?
  - > First calculation of hard/soft correlation in CGC

Pioneering team in close contact with experimentalists

Contributing labs: IPhT, CPHT Responsible: J.-Y. Ollitrault (IPhT) Requested resources: 2 years of postdoc



#### Synergies:

Unification: space, tools Geometry: experiment nucleus Gluometer: radiation

Geometry

Unification

**Future** 

## **Unification tools**

#### Geometry Unification Gluometer Future

# Quick, automated & user-friendly calculations for theory and experiment

- Need for state-of-the-art calculations
  - > Theory & phenomenology & experiment
  - MC generators for experimentalists
  - Fitting and parameter extraction
- Prerequiste for precision studies as in HEP
- NLOAccess and PARTONS: World-leading toolkits at the service of the community
  - Current funding focusing on technical man-power

To establish these software tools as world standards: Funds for visibility, interactions with experts & dedicated hardware

Contributing labs: IPNO, DPhN, LPT Responsibles: J.-P. Lansberg (IPNO), H. Moutarde (DPhN) Requested resources: support for NLOAccess & PARTONS





#### Synergies:

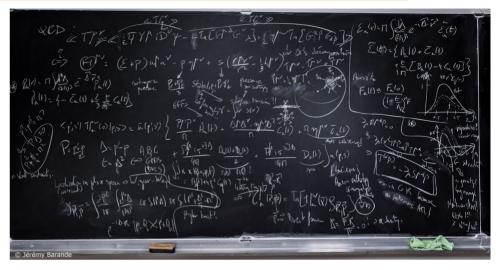
Gluometer:all teamsGeometry:all teamsFuture:all teams

# Gluod namics Unification cross education

Geometry Unification Gluometer Future

## Create a space to learn & to exchange on theoretical & conceptual level

- Teach a new generation & ourselves on research activities at the interface QGP-hadron structure
- Complement local knowledge
   with worldwide experts
- Format: 3-week lecture series: 1 local + 1 external coupled with general Gluodynamics workshop


Tentative topics: "Transverse momentum dependent distributions" (2020), "Thermalisation: from initial state to hydrodynamics" (2021)

Contributing labs: all

Responsibles: F. Arleo (LLR), F. Gelis (IPhT), C. Lorcé (CPHT), J.-P. Lansberg (IPNO), Hervé Moutarde (DPhN), J.-Y. Ollitrault (IPhT), S. Wallon (LPT) Coordination: C. Marquet & M. Winn Requested resources: financial support for guests, budget complemented by

GDR QCD and institute visitor budgets

Flagship P2IO: Gluodynamics



#### Synergies:

Gluometer:all teamsUnification:all teamsGeometry:all teamsFuture:all teams

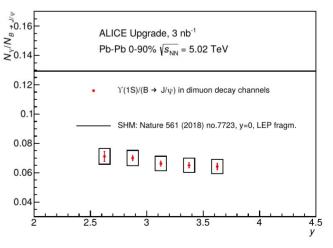
## Forcemeter collider

Geometry Unification Gluometer Future

# Probing deconfinement: new instrumentation for new observables in the theoretically clean beauty sector


- Quarkonium: hydrogen atom of QCD probe of deconfinement
  - Beauty theoretically cleaner than charm
  - > Production reservoir not measured for  $p_T > 0$  GeV/c
- Unique opportunity with ALICE MFT Run 3:
  - $^{\succ}~~Y \rightarrow \mu \mu$  /B(  $\rightarrow$  J/ $\Psi \rightarrow \mu \mu$ ) in PbPb
  - >  $B_c \rightarrow 3\mu(+\nu)$  for  $p_T > 0$  GeV/c to study recombination with beauty or DY as new control at LHC energies

Expert team with experience & responsibility in ALICE as convenors/project responsibles


Contributing labs: DPhN, IPNO Responsible: M. Winn (DPhN) Requested resources: 2 years postdoc

| Synergies:   |                        |
|--------------|------------------------|
| Gluometer:   | forcemeter & radiation |
| Unification: | tools, time            |
| Geometry:    | nuclear geometry       |
| Future:      | hadron collider        |

Flagship P2IO: Gluodynamics



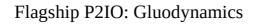
## Muon Forward Tracker silicon discs

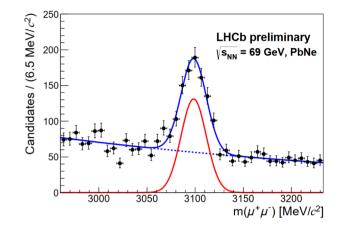


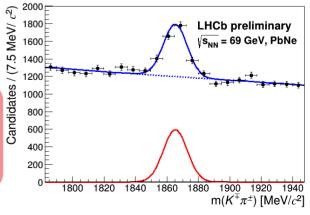
## Forcemeter fixed-target

Geometry Unification Gluometer Future

#### Probing deconfinement: precise & complete set of open & hidden charm without recombination


- LHC fixed-target complementary to collider:
  - No recombination for charm
  - Different temperature & baryo-chemical potential
- LHCb: large rapidity range, longitudinal boost, precise tracking+PID
- Comprehensive measurements in p-Nucleus & Nucleus-Nucleus:


pA: nuclear parton distributions (via NLOAccess), absorption & comovers


AA: probing deconfinement

Pioneers & expert team with experience & responsibility as convenors & synergy with collider simulations

Contributing labs: LLR, LAL Responsible: F. Fleuret (LLR) Requested resources: 1 year postdoc, one year available from CNRS starting soon Synergies:Future:hadron colliderGluometer:forcemeter colliderUnification:tools





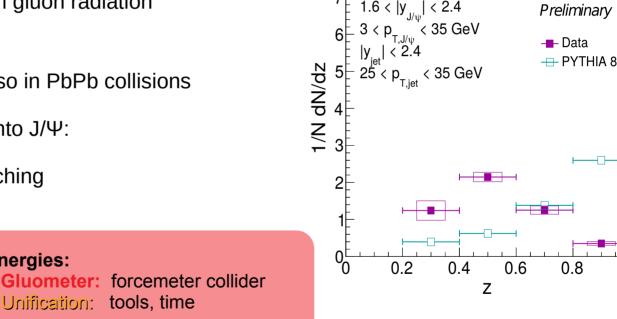






CMS

pp 27.39 pb<sup>-1</sup> (5.02 TeV)


## Determine relevance of gluon radiation for quarkonium production

**Synergies:** 

- LHC: a heavy-guark jet factory
  - Unique laboratory to study in-medium gluon radiation ۶
- CMS: ideal for these studies
  - Excellent muon & jet performance also in PbPb collisions
- Measurement of fragmentation of jets into  $J/\Psi$ :
  - An opportunity to explore boundary between  $J/\Psi$  dissociation & jet quenching

World experts on jets & guarkonia with embedded theory support

Unification: tools, time Contributing labs: LLR, IPhT Responsible: M. Nguyen (LLR) Requested resources: 1 year postdoc, one year available from STRONG 2020 or ANR (ColdLoss)

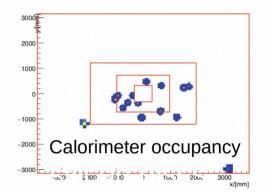


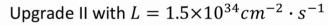
**Prompt I**/ $\psi$ 

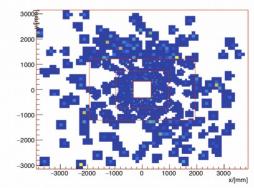




## A calorimeter in LHCb@HL-LHC for heavy-ion collisions


- LHCb upgrade II: unique QGP physics opportunity
  - Longitudinal boost for vertexing & PID
- Photons & electrons:
  - Key signatures: thermal radiation & radiative quarkonium decays
  - Calorimeter performance key
- Upgrade TDR: optimize parameters for heavy-ions
   & exploration of reconstruction optimisation using FPGA
- Full heavy-ion simulations with upgrade II detectors


LHCb simulation & calo core team & its technical support, synergy with LLR fixed-target & LAL flavour physics programme


Contributing labs: LAL, LLR Responsible: P. Robbe (LAL) Requested resources: 2 years postdoc + FPGA-based prototypes Synergies: Gluometer: all teams Unification: time, tools

#### Flagship P2IO: Gluodynamics

Present  $L = 2 \times 10^{32} cm^{-2} \cdot s^{-1}$ 





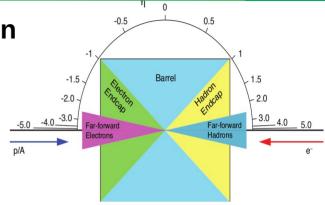


## Future electron-ion collider

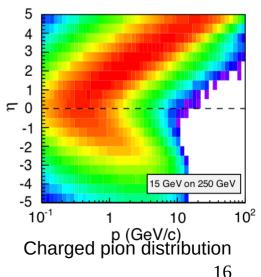
Geometry Unification Gluometer Future

## Establish P2IO as key contributor to detector conception

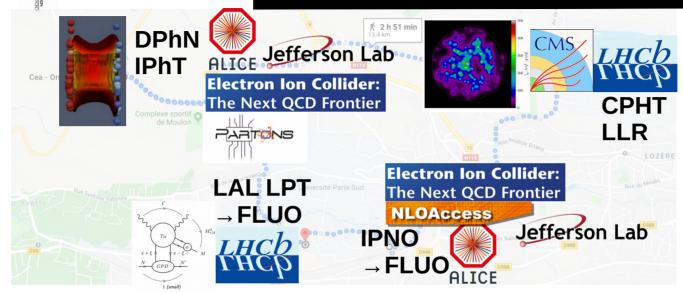
- Electron-Ion Collider: gluons in the nucleon & in nuclei with precision
   P2IO involved with experiment, phenomenology & theory
- Contribute to the crucial design phase with P2IO physic cases
  - Realistic physics simulations for specifications: trade-off PID & tracking
  - Design optimisation Micromegas-based tracking EIC UG Yellow report
  - PID algorithms for compact TPC


**Gluod** *namics* 

feedback to R&D efforts at Irfu & IPNO


IPNO: leading R&D for precision forward calorimetry Irfu: leading in design & dev. of gaseous tracking for central & forward

Contributing labs: DPhN & DEDIP, IPNO Responsible: F. Bossu (DPhN) Requested resources: 2 years postdoc Synergies: Geometry: all teams Unification: space, tools


#### Flagship P2IO: Gluodynamics



Schematic detector layout



# **Gluod** *namics* in P2IO: a unique chance



- Worldwide uniquely rich & complementary QCD research in P2IO
- Interfaces between communities & theory-experiment:
  - > Important now & more in future: UPC, TMD/GPD–GCG, initial-state–hydro, CGC–jets/quarkonium
  - Require fresh minds & means to exchange & to exploit these links
- Gluodynamics very timely:
  - The spark to exploit the full potential
  - Trigger lasting connection with young researchers

# Gluod namics Longterm vision for P2IO QCD

- Past & present: leading in hadron structure & QGP physics
- Sustain & improve impact in difficult environment
  - Increasing number of actors
  - Decreasing number of world-leading facilities
  - Increasing size & cost of facilities

## • Gluodynamics

- Conceptual, experimental & synergetic foundation for post-2030 era
  - Future instrumentation at the LHC for QCD
  - Future instrumentation at the Electron-Ion Collider
  - > Towards a single community for hadron and QGP structure



## Conclusions

- New & old open questions in QCD research: exciting opportunities
  - Particularly at interfaces between hadron structure & QGP research
- **P2IO**: ideal for a world-leading contribution with unique expertise

#### • Gluodynamics

- Spark for links + contribution to the frontier in QGP & hadron structure in view of gluons
- Long-term vision
  - A new research field to investigate hadron & QGP structure in a universal paradigm at the next generation of QCD facilities

## **QCD** matters!

## **Back-up: Delivrables**

| WP  | Delivrable           | Description                                                             | Finalisation | Contact        |
|-----|----------------------|-------------------------------------------------------------------------|--------------|----------------|
| Ι   | nucleon-ex 1         | DVCS off proton/neutron (CLAS12)                                        | T2-2023      | C. Muñoz       |
| Ι   | nucleon-ex 2         | L/T Rosenbluth separation DVCS (Hall C)                                 | T4-2023      | C. Muñoz       |
| Ι   | nucleon-ex 3         | UPC pPb (in)coherent                                                    | T2-2022      | M. Winn        |
| Ι   | nucleon-theo 1       | $\gamma^{(*)}N \to \gamma M N'$ : NLO & CGC                             | T4-2021      | S. Wallon      |
| Ι   | nucleon-theo 2       | $\gamma^{(*)}N \to \gamma M N'$ : power corrections & applications      | T4-2023      | S. Wallon      |
| Ι   | nucleus-ex 1         | forward PC coherent                                                     | T1-2023      | L. Massacrier  |
| Ι   | nucleus-ex 2         | semi-forward/central PC coherent                                        | T4-2023      | L. Massacrier  |
| II  | uni-space 1          | GPD input in hydro initialization for small systems                     | T4-2021      | C. Marquet     |
| II  | uni-space 2          | QCD correlations between momentum and spatial anisotropies              | T4-2023      | C. Marquet     |
| II  | uni-time 1           | 3D ab-initio initial state generator                                    | T4-2021      | JY. Ollitrault |
| II  | uni-time 2           | impact of initial stage on high- $p_t v_2$                              | T4-2022      | JY. Ollitrault |
| II  | uni-tools 1          | Inclusion in NLOAccess of codes from the project                        | T4-2023      | JP. Lansberg   |
| II  | uni-tools 2          | Inclusion in PARTONS of codes from the project                          | T4-2023      | H. Moutarde    |
| III | force-collider 1     | non-prompt $J/\psi$ and $\Upsilon$ PbPb measurements                    | T4-2022      | M. Winn        |
| III | force-collider 2     | $B_c$ PbPb or DY measurement                                            | T4-2023      | M. Winn        |
| III | force-fixed-target 1 | $J//\psi$ and $D^0$ measurement in p-Ne & Pb-Ne Run 2                   | T2-2021      | F. Fleuret     |
| III | force-fixed-target 2 | $J//\psi, \psi(2S), \chi_c$ and $D^0$ measurement in Run 3 p-A and Pb-A | T4-2022      | F. Fleuret     |
| III | radiation 1          | high- $p_T$ quarkonium + jet Run 3 measurement                          | T4-2022      | M. Nguyen      |
| IV  | hh collider 1        | framework TDR calorimeters                                              | T4-2021      | P. Robbe       |
| IV  | hh collider 2        | realistic heavy-ion simulations for LHCb Upgrade 2                      | T1-2022      | P. Robbe       |
| IV  | e-h collider 1       | CDR EIC detector                                                        | T4-2021      | F. Bossu       |
| IV  | e-h collider 2       | realistic simulations for exclusive reactions at the EIC                | T1-2022      | F. Bossu       |

## **Back-up: Milestones**

| Delivrable                     | Milestone                                                                                                                                                                                                 | Finalisation                 |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| nucleon-ex 1                   | preliminary result: DVCS BSA proton                                                                                                                                                                       | T4-2022                      |
| nucleon-ex 1                   | data-taking: CLAS12                                                                                                                                                                                       | T1-2023                      |
| nucleon-ex 1                   | publication: DVCS CLAS12                                                                                                                                                                                  | T2-2023                      |
| nucleon-ex 2                   | data taking: NPS in Hall C                                                                                                                                                                                | T1 - 2022                    |
| nucleon-ex 2                   | publication: Hall C data                                                                                                                                                                                  | T4 - 2023                    |
| nucleon-ex 3                   | feasibility: incoh. $J/\psi$ pPb UPC                                                                                                                                                                      | T2 - 2021                    |
| nucleon-ex 3                   | publication: UPC $J/\psi$ pPb Run 2                                                                                                                                                                       | T2-2022                      |
| nucleon-theo 1                 | publications: LO processes                                                                                                                                                                                | T1-2021                      |
| nucleon-theo 1                 | publications: NLO & CGC LO                                                                                                                                                                                | T4-T021                      |
| nucleon-theo 2                 | publication: phenomenology                                                                                                                                                                                | $T_{2}-T_{022}$              |
| nucleon-theo 2                 | publications: power corrections                                                                                                                                                                           | T1-2023                      |
| nucleon-theo 2                 | publication: NLO/CGC integration in PARTONS/NLOAccess & feasibility CLAS12/LHC/EIC                                                                                                                        | T4-T023                      |
| nucleus-ex 1                   | publication: NEO/CGC integration in FARTONS/NEOAccess & leasibility CLAST2/Enc/ElC<br>publication: PbPb forward rapidity low- $p_T J/\psi$ excess polarization (Run2 + potentially Run3)                  | T1-2022                      |
| nucleus-ex 1<br>nucleus-ex 1   | publication: For b forward rapidity low- $p_T J/\psi$ excess polarization (Run2 + potentially Run3)<br>publication: Excess for other quarkonia and $J/\psi$ excess in most central PbPb collisons (Run 3) | T1-2022                      |
| nucleus-ex 1<br>nucleus-ex 2   | software dev. & feasibility, potential publication of semi-forward low- $p_T J/\psi$ excess                                                                                                               | T1-2023                      |
| nucleus-ex 2<br>nucleus-ex 2   |                                                                                                                                                                                                           | T3-2023                      |
|                                | publication: low- $p_T J/\psi$ excess at midrapidity as function of centrality, t-slope                                                                                                                   |                              |
| uni-space 1                    | publication: eccentricity fluctuations in small systems                                                                                                                                                   | T4-2020                      |
| uni-space 1                    | publication: small-systems hydro with GPD input                                                                                                                                                           | T4-2021                      |
| uni-space 2                    | publication: Wigner distribution from dipole cascade                                                                                                                                                      | T4-2022                      |
| uni-space 2                    | publication: anisotropies of particle production in small systems                                                                                                                                         | T4-2023                      |
| uni-time 1                     | publication: CGC energy-momentum tensor with GPDs                                                                                                                                                         | T4-2020                      |
| uni-time 1                     | publication: longitudinal correlations and conserved charges/ $p_T$ fluctuations                                                                                                                          | T2-2021                      |
| uni-time 1                     | publication and code: 3D model                                                                                                                                                                            | T4-2021                      |
| uni-time 2                     | publication: energy density/particle production correlation in CGC                                                                                                                                        | T4-2021                      |
| uni-time 2                     | publication: high-pt $v_2$ with soft/hard correlation                                                                                                                                                     | T4-2022                      |
| uni-tools 1                    | software: access via NLOAccess to codes for the project                                                                                                                                                   | T3 - 2020                    |
| uni-tools 1                    | software: projects codes online in NLOAccess                                                                                                                                                              | T4-2023                      |
| uni-tools 2                    | software: interface between GPD models in PARTONS and uni-space 1 &                                                                                                                                       | T4-2021                      |
|                                | open source access to fit results on 3D nucleon structure                                                                                                                                                 |                              |
| uni-tools 2                    | software: GPD and TMD models from Wigner distributions &                                                                                                                                                  | T4-2023                      |
|                                | inclusion in PARTONS of project codes                                                                                                                                                                     |                              |
| force-collider 1               | software development: for Run 3                                                                                                                                                                           | T2-2021                      |
| force-collider 1               | preliminary result: non-prompt $J/\psi$ PbPb                                                                                                                                                              | T2 - 2022                    |
| force-collider 1               | publication: $\Upsilon/(\text{non-prompt } J/\psi)$ PbPb                                                                                                                                                  | T4-2022                      |
| force-collider 2               | feasibility: $DY/B_c$                                                                                                                                                                                     | T4-2021                      |
| force-collider 2               | publication: DY or $B_c$                                                                                                                                                                                  | T4-2023                      |
| force-fixed-target 2           | data taking: proton-nucleus 2021                                                                                                                                                                          | T3-2021                      |
| force-fixed-target 2           | data taking: Pb-nucleus 2021                                                                                                                                                                              | T4-2021                      |
| force-fixed-target 2           | publication: charm production with Run 2 data                                                                                                                                                             | T2-2021                      |
| force-fixed-target 2           | publication: charm production with Run 3 data                                                                                                                                                             | T4-2022                      |
| radiation 1                    | data taking: PbPb 2021                                                                                                                                                                                    | T4-2021                      |
| radiation 1                    | publication: 2021 data                                                                                                                                                                                    | T4-2022                      |
| hh-collider 1                  | software development; simulation set-up for heavy-ion conditions                                                                                                                                          | T4-2020                      |
| hh-collider 1                  | optimisation: detector layout heavy-ions in HL-LHC phase                                                                                                                                                  | T4-2020                      |
| hh-collider 1                  | framework TDR: contribution calorimeters LHCb Upgrade 2                                                                                                                                                   | T4-2021                      |
| hh-collider 2                  | realistic heavy-ion simulations for LHCb Upgrade 2                                                                                                                                                        | T1-2021<br>T1-2022           |
| eh-collider 1                  | requirement definition TPC                                                                                                                                                                                | T2-2022                      |
| eh-collider 1                  | design choices: for TPC and optimisation for CDR                                                                                                                                                          | $T_{2-2020}$<br>$T_{2-2021}$ |
| eh-collider 1<br>eh-collider 2 | realistic simulations for exclusive reactions at the EIC                                                                                                                                                  | $T_{2-2021}$<br>$T_{2-2021}$ |
| en-conder 2                    | realistic simulations for exclusive reactions at the EIC                                                                                                                                                  | 12-2021                      |

Table 4: Detailed overview of milestones for the different delivrables.

## **Back-up: Involved personal**

| Institute | Name                           | Role          |                        | WP                          | FTE       |
|-----------|--------------------------------|---------------|------------------------|-----------------------------|-----------|
|           | Cyrille Marquet                | PI, WP leader | theo                   | II,IV,I                     | 60 %      |
| CPHT      | Stéphane Munier                | Contributor   | theo                   | I,II                        | 25 %      |
| CFHI      | Cédric Lorcé                   | Contributor   | theo                   | I,II                        | 25 %      |
| ~         | Bernard Pire <sup>*</sup>      | Contributor   | theo                   | I,II                        | 50 %      |
|           | Jean-Yves Ollitrault           | WP leader     | theo                   | II                          | 60 %      |
|           | Edmond Iancu                   | Contributor   | theo                   | II                          | 10 %      |
| IPhT      | Francois Gelis                 | Contributor   | theo                   | II                          | 20 %      |
| 11 11 1   | Gregory Soyez                  | Contributor   | theo                   | II,III                      | 10 %      |
|           | Jean-Paul Blaizot <sup>*</sup> | Contributor   | theo                   | II                          | 15 %      |
|           | Christophe Suire               | Contributor   | ex                     | I, III                      | 30 %      |
|           | Laure Massacrier               | WP leader     | ex                     | $\mathbf{I}, \mathbf{III}$  | 30 %      |
|           | Carlos Muñoz                   | WP leader     | ex                     | $\mathbf{I}$ ,IV            | 60 %      |
|           | Bruno Espagnon                 | contributor   | ex                     | Ι                           | 20 %      |
| IPNO      | Jean-Philippe Lansberg         | WP leader     | theo                   | $\mathbf{II}$ ,I,III        | 25 %      |
|           | Laure-Amélie Couturier         | Contributor   | comput.                | II                          | 15 %      |
|           | Vicent Lafage                  | Contributor   | comput.                | II                          | 15 %      |
|           | Raphael Dupré                  | Contributor   | ex                     | Ι                           | 10 %      |
|           | Dominique Marchand             | Contributor   | ex                     | I                           | 20 %      |
|           | Silvia Niccolai                | Contributor   | ex                     | Ι                           | 60 %      |
|           | Zaida Conesa del Valle         | Contributor   | ex                     | I,III                       | 20 %      |
|           | Michael Winn                   | PI, WP leader | ex                     | III, I, IV                  | 60 %      |
|           | Francesco Bossu                | WP leader     | ex                     | IV,I                        | 50 %      |
|           | Hervé Moutarde                 | WP leader     | theo                   | $\mathbf{II},\mathbf{I}$    | 30 %      |
|           | Franck Sabatié                 | Contributor   | ex                     | I,IV                        | 10 %      |
| DPhN      | Maxime Defurne                 | Contributor   | ex                     | I,IV                        | 30 %      |
| DI III    | Javier Castillo                | Contributor   | ex                     | III,IV                      | $25 \ \%$ |
|           | Alberto Baldisseri             | Contributor   | ex                     | III,IV                      | 15 %      |
|           | Andrea Ferrero                 | Contributor   | ex                     | III                         | $15 \ \%$ |
|           | Stefano Panebianco             | Contributor   | ex                     | III,IV                      | 15 %      |
|           | Andry Rakotozafinadrabe        | Contributor   | ex                     | III,IV                      | 15 %      |
| DEDIP     | Maxence Vandenbroucke          | Contributor   | ex                     | IV                          | 20 %      |
| DEDII     | Stephan Aune                   | Contributor   | ex                     | IV                          | 15 %      |
|           | Patrick Robbe                  | WP leader     | ex                     | IV                          | 50 %      |
| LAL       | Yasmine Amhis                  | Contributor   | ex                     | IV                          | 10 %      |
|           | Daniel Charlet                 | Contributor   | ex                     | IV                          | 10 %      |
|           | Frédéric Fleuret               | WP leader     | ex                     | III, IV                     | 60 %      |
|           | Matt Nguyen                    | WP leader     | ex                     | III                         | 50 %      |
| LLR       | François Arleo                 | Contributor   | theo                   | III                         | 15 %      |
|           | Raphael G. d. Cassagnac        | Contributor   | ex                     | III                         | 20 %      |
|           | Emilie Maurice                 | Contributor   | $\mathbf{e}\mathbf{x}$ | $\mathbf{III}, \mathbf{IV}$ | 50 %      |
| LPT       | Samuel Wallon                  | WP leader     | theo                   | $\mathbf{I}, \mathbf{II}$   | 60 %      |

| Institute | type         | years         | theo/ex | WP      | primary supervisor | FTE  |
|-----------|--------------|---------------|---------|---------|--------------------|------|
| CPHT      | postdoc P2IO | T4-20 - T3-22 | theo    | II,I    | C. Marquet         | 100% |
| OFHI      | postdoc X    | T1–20 - T4–21 | theo    | II,I    | C. Marquet         | 50%  |
| IPhT      | postdoc P2IO | T1-21 - T1-22 | theo    | II,III  | JY. Ollitrault     | 100% |
| IPNO      | PhD P2IO     | T4–20 - T3–23 | ex      | Ι       | C. Muñoz           | 50%  |
| IFNO      | postdoc P2IO | T2-21 - T2-23 | ex      | I,III   | C. Suire           | 100% |
|           | PhD          | T4–20 - T4–23 | ex      | I,III   | L. Massacrier      | 100% |
|           | PhD          | T4-21 - T3-23 | ex      | Ι       | C. Muñoz           | 100% |
|           | PhD          | T1–20 - T3–20 | theo    | II      | J.P. Lansberg      | 30 % |
| DPhN      | postdoc P2IO | T1-21 - T4-22 | ex      | III,I   | M. Winn            | 100% |
| DEIIN     | postdoc P2IO | T2–20 - T1–23 | ex      | IV,I    | F. Bossu           | 100% |
|           | PhD          | T1-20 - T3-22 | ex      | Ι       | M. Winn            | 50 % |
|           | PhD          | T1–20 - T3–22 | ex      | III     | J. Castillo        | 50 % |
| LAL       | postdoc P2IO | T2–20 - T1–23 | ex      | IV,III  | P. Robbe           | 100% |
| LLR       | postdoc P2IO | T1-22 - T1-22 | ex      | III     | M. Ngyuen          | 100% |
|           | postdoc P2IO | T1–21 - T1–22 | ex      | III, IV | F. Fleuret         | 100% |
| LPT       | postdoc P2IO | T1–21 - T4–22 | theo    | Ι       | S. Wallon          | 100% |

Table 3: The list of involved non-permanent personal at the P2IO Laboratories including requested personal in bold.

Table 2: The list of involved permanent personal at the P2IO Laboratories. (\*: Emeriti)

## **Back-up: Request by topics**

| WP          |                                  | Institutes                  | Contact                          | budget/kEuro |
|-------------|----------------------------------|-----------------------------|----------------------------------|--------------|
| Geometry    | nucleon-ex                       | IPNO, DPhN                  | C. Muñoz                         | 55           |
| Geometry    | nucleon-theo                     | LPT, DPhN, CPHT             | S. Wallon                        | 110          |
| Geometry    | nucleus-ex                       | IPNO, DPhN, IPhT            | L. Massacrier                    | 110          |
| Unification | uni-space                        | CPHT, LPT, IPhT             | C. Marquet                       | 110          |
| Unification | uni-time                         | IPhT CPHT                   | JY. Ollitrault                   | 110          |
| Unification | uni-tools                        | IPNO, DPhN                  | JP. Lansberg & H. Moutarde       | 20 + 20      |
| Unification | cross education                  | CPHT, DPhN, IPhT, IPNO, LLR | C. Marquet & M. Winn             | 3+3          |
| Gluometer   | force-collider                   | DPhN, IPhT, LLR, IPNO       | M. Winn                          | 110          |
| Gluometer   | force-fixed-target               | LLR, LAL, IPNO              | F. Fleuret                       | 55           |
| Gluometer   | radiation                        | LLR, IPhT                   | M. Nguyen                        | 55           |
| Future      | hh collider                      | LAL, LLR, DPhN              | P. Robbe                         | 120          |
| Future      | e-h collider                     | DPhN, IPNO                  | F. Bossu                         | 110          |
| Future      | $\operatorname{conf./workshops}$ | CPHT, DPhN & all            | ${ m C.Marquet}$ & ${ m M.Winn}$ | 10+10        |

Gluod namics

Table 5: Financial requirements for the project with topical structure.

# **Gluod** *namics* Back-up: Request by institutions

| Site       | Institute | Purpose              | Budget/kEuro | Institute sum |
|------------|-----------|----------------------|--------------|---------------|
| 6          | IPNO      | personal             | 165          | 185           |
| 0          |           | support NLOAccess    | 20           |               |
| Orsay      | LAL       | personal             | 110          | 120           |
|            |           | hardware             | 10           | 120           |
|            | LPT       | personal             | 110          | 110           |
|            | IPhT      | personal             | 110          | 110           |
|            |           | personal             | 220          |               |
| Saclay     | Irfu/DPhN | support PARTONS      | 20           | 253           |
| Baciay     |           | conference/workshops | 10           | 200           |
|            |           | lectures             | 3            |               |
|            |           | personal             | 110          |               |
| Palaiseau  | CPHT      | conference/workshops | 10           | 123           |
| 1 alaiseau |           | lectures             | 3            |               |
|            | LLR       | personal             | 110          | 110           |

Table 6: Financial requirements per institute and site. The total budget amounts to 1,011,000 Euros.