Current and Future balloon and space experiments L. Derome (LPSC Grenoble)

Tango, May 4-6th, 2009

Plan

I will focus on:

- Future experiments which are going to measure e⁺ and e⁻ CR in the forthcoming years.
- Experiments which results will improve our knowledge on CR source & propagation mechanisms.

Estimate primary, secondary and exotic e⁺ and e⁻ flux

ATIC - FERMI – PAMELA -> see this morning presentations This talk : AMS02 - CREAM - CALET - CREST

e⁺- e⁻ Measurements

Experimental challenge

- ➢ Rare signal → large acceptance
 - \rightarrow long exposure time
- Huge background from p component e⁻/p ~1% @ 1 GeV, ~0.1% @ 1 TeV, e⁺/e⁻ ~0.1
 - \rightarrow optimal e/p separation
 - \rightarrow charge sign measurement
- Secondary production in atmosphere
 - → stratospheric balloon
 - \rightarrow space

Experimental measurements

- All electron spectrum (e⁺ + e⁻). → e/p, acc
- Positron fraction (e⁺/e⁻+e⁺) → e/p, charge
- Absolute fluxes e^+ , $e^ \rightarrow$ e/p, charge, acc.

AMS02

Magnetic Spectrometer on ISS

AMS experiment is to perform accurate, high statistics, long duration measurements in space of

- Energetic (0.1 GV few TV) charged CR
- Energetic (>1 GeV) gamma rays.

AMS02 detector

> Measurements of particle:

- Rigidity: Silicon Tracker in super conducting magnet (0.9 T)
- e-γ energy: Electromagnetic Calorimeter (ECAL)
- (e/p) rejection: TRD & ECAL
- Charge: TOF, Tracker, RICH
- Velocity: TOF, RICH

AMS02: Status

> AMS02 back in the official NASA schedule (manifest)

Launch date : July/Sept. 2010

>All AMS detectors validated with cosmics muons and testbeam.

>AMS Magnet under test @ CERN

Detector to be delivered at KSC beginning of 2010

AMS02: e⁺ and e⁻

>AMS02 will provide precise absolute flux for

- e⁺ up to 300 GeV
- e⁻ up to 1 TeV

High convidence level (e⁺/p rejection factor > 10⁵ up to 300 GeV)

AMS02 : Radioactive Isotopes

AMS02: The quartet

- Lightest nuclei in CR: p d ³He ⁴He
 Additional Secondary/Primary ratio: d/p and ³He/⁴He
- mass identification needed (RICH)

Provides additional inputs to test CR propagation models

The CREAM experiment

CREAM (Cosmic Ray Energetics and Mass):

> Balloon borne experiment, dedicated to high energy cosmic ray measurements between 1 TeV – 1000 TeV

- > 4 LDB flights achieved: CREAM I-IV
 >100 days of cumulative exposure
- > Instrument:

•Energy measurement: Tungsten-Calorimeter

•Charge identification:

-Silicon detectors

Imaging Cherenkov Camera
No e/p identification

>Elemental spectra measurement:

• Extends direct measurements to groundbased air shower energies.

Secondary/Primary ratio at high Energy:
 "direct" constrain on the diffusion index (δ).

CREAM Coll. : US, Korea, Italie, Mexico, France

CREAM

Mid-long term future : Ultra Long Duration Balloon (ULDB) flights

ULDB

NASA Balloon Program is developing a Super Pressure Balloon.
 ≻Sealed and pressurized to maintain constant altitude night and day
 ≻0.6 million m³ balloon able to carry a one-ton instrument for 100 days

Test flight during the Antarctica campaign 08-09
>0.2 million m³ balloon (scale 1/3 model)
> Sets new flight record of 54 days

GMD 2009 Mar 02 20:16:05 ULDB_Antarctica_2008-2009

Image of the SPB taken through a telescope

First ULDB scientific flight in forthcoming years

CALET: CALorimetric Electron Telescope

CALET Mission Concept

Instrument: High Energy Electron and Gamma-Ray Telescope Consisted of

- Imaging Calorimeter (IMC)
- Total Absorption Calorimeter (TASC)

Launch: HTV: H-IIA Transfer Vehicle

Attach Point on the ISS:
 Exposed Facility of Japanese
 Experiment Module (JEM-EF)

Life Time: >3 years

Mission Status Launch around 2013 in Plan

CALET Payload:

- IGeV ~ 10 TeV for electrons (e⁺+e⁻)
- > 20 MeV ~ TeV for gamma-rays
- Several 10 GeV ~ 1000 TeV for nuclei
- Geometrical Factor: 1 m²sr

Japan/USA/Italie/China (PPB-BETS coll.)

CALET: All electron flux

• Above 1 TeV, sensitive probe of nearby accelerating sources.

>Measurement of the anisotropy in electron arrival directions due to local source

CALET: Elemental flux

bCALET

bCALET : CALET on balloon

bCALET-1 (1/64 scale of CALET)
 Was flown in 2006 from Sanruki Balloon
 Center

>bCALET-2 (1/32 scale of CALET)
In preparation

>bCALET-3 (1/4 scale of CALET) Long Duration Flight

CREST

Cosmic-Ray Electron Synchrotron Radiation Telescope

Extend all electron (e⁻+e⁺) flux measurements up to 50 TeV

CREST

CREST calendar:

>CREST test flight is currently
taking place (Ft. Summer)

>LDB/ULDB Flight in Antarctica in the forthcoming seasons

Long-term future : CREST in Space No atmosphere, lower x-ray threshold, longer exposure Expected result: 100-day CREST exposure for two extremes: no local source, and for a uniform source distribution

Conclusions

Current and future experiments in the forthcoming years:

- Space experiments : PAMELA FERMI AMS02 CALET
- Balloon experiments : ATIC CREAM bCALET CREST

➡ ULDB : research platform for the future

- > They will provide new e⁻ and e⁺ measurement with:
 - More statistics
 - Absolute fluxes for e⁺, e⁻
 - Extended energy range

> These new data should confirm (or not) the e⁺ and e⁻ excess and allow to investigate their origin.

> New nuclei (elemental and isotopic) precise flux measurements

Very important data to understand source & propagation mechanisms:

Better constrains on propagation models.

•Better estimation of primary, secondary and exotic e⁺ and e⁻ flux.