Cosmic antimatter from

dark matter annihilation:

effects of cosmological subhalos

and uncertainties

Julien Lavalle

(Dept of Theoretical Physics, University of Turin) Refs (arXiv) : 0603796, 0712.0468, 0709.3634, 0704.2543, 0808.0332, 0809.5268, 0902.3665 <u>Collab</u>: Delahaye, Salati, Taillet (LAPTH) – Maurin (LPNHE) – Nezri (LAM) Ling (Brussels) – Donato, Fornengo, Lineros (Turin) – Bi, Yuan (Beijing) – Bringmann (Stockholm) 1st Tango in Paris – IAP

Tuesday, May 5th 2009

ien Lavalle, TANGO in Paris - IAP, 4-7/V/2009 -

Requirements from PAMELA

e⁺ background(Delahaye et al, arXiv:0809.5268)

Requirements from PAMELA

MED

MAX

MS98

1

10⁻²

Orders of magnitude for $\chi\chi \to e^+e^-$ (for $E \to m_{\chi} = 100$ GeV). From PAMELA, the excess is $\leq 5 \times \phi_{\rm bg}(100 \text{ GeV}) \sim 1.5 \cdot 10^{-9} \text{cm}^{-2}.\text{s}^{-1}.\text{GeV}^{-1}.\text{sr}^{-1}.$

∈₆^{3,5} d∲/d⊑ [cm⁻².sr⁻¹.s⁻¹.GeV⁻¹]

10⁻¹

10⁻¹

• AMS 01

1

10

$$\begin{array}{cccc} \phi_{\mathrm{bg}}(100 \ \mathrm{GeV}) &\simeq & 3 \cdot 10^{-10} \left(\frac{E}{100 \ \mathrm{GeV}}\right)^{-3.5} \mathrm{cm}^{-2} \mathrm{.s}^{-1} \mathrm{.GeV}^{-1} \mathrm{.sr}^{-1} \\ \phi_{\chi\chi}(E \to m_{\chi}) &\simeq & \frac{\delta\beta c}{4\pi} \frac{\tau E_0}{E^2} \frac{\langle \sigma v \rangle}{2} \left(\frac{\rho_{\odot}}{m_{\chi}}\right)^2 \\ &\simeq & 3 \cdot 10^{-10} \left(\frac{\tau}{10^{16} \mathrm{s}}\right) \left(\frac{\rho_{\odot}}{0.3 \ \mathrm{GeV/cm}^3}\right) \left(\frac{100 \ \mathrm{GeV}}{m_{\chi}}\right)^4 \left(\frac{\langle \sigma v \rangle}{3 \cdot 10^{-26} \mathrm{cm}^3/\mathrm{s}}\right) \\ \end{array}$$
For $m_{\chi} \simeq 100 \ \mathrm{GeV}$, need for an amplification of: $\mathcal{B} \simeq 5$.
$$\begin{array}{c|c} & & & \\ & & & & \\ & &$$

Full allowed

E [GeV]

10²

10²

E [GeV]

□ HEAT 00

• AMS1 07

10

PAMELA 08

Smooth NFW halo and generic predictions

WIMP mass	100 GeV	500 GeV	1 TeV
final state			
e^+e^-	5	100	350
W^+W^-	80	500	1000
$b \overline{b}$	250	500	1000

Smooth NFW halo and generic predictions

Inhomogeneous halo

and boosted annihilation rate

- Though the topic is still controversial, clumps are predicted by theory and simulations of hierarchical formation of structures (in the frame of ΛCDM)
- Annihilation rate is increased in a characteristic volume, because $< n_{\rm dm}^2 > \ge < n_{\rm dm} >^2$ (Silk & Stebbins ApJ'93)
- The boost factor to the annihilation rate is related to the statistical variance via $B_{\rm ann} \sim \frac{\langle n_{\rm dm}^2 \rangle}{\langle n_{\rm dm} \rangle^2}$
- There is some scatter in N-body experiments: how to translate theoretical uncertainties to flux uncertainties ? what and where are the less ambiguous signatures, if so ?

(Fig. from Diemand et al, MNRAS'04)

Inhomogeneous halo

and boosted annihilation rate

Minimal mass from free streaming $\sim 10^{-6} M_{\odot}$ (e.g. Bringmann arXiv:0903.0189).

Nbody resolution: $\sim 10^5 M_{\odot} - \sim 10^5$ subhalos in the MW (e.g. Diemand et al 08, Springel et al 08).

Mass distribution $\sim M^{-1.9}$, various concentration models. $\Rightarrow \sim 10^{15}$ Earth-mass objects in the MW!

Antibiased spatial distribution. (What for small objects ?)

Limits: spatial and mass resolutions (numerical) + NO BARYONS (physical)!

(Fig. from Diemand et al, MNRAS'04)

Though the topic is still controversial, clumps are predicted by theory and simulations of hierarchical formation of structures (in the frame of Λ CDM)

6 Annihilation rate is increased in a characteristic volume, because $< n_{\rm dm}^2 > \ge < n_{\rm dm} >^2$ (Silk & Stebbins ApJ'93)

- 6 The boost factor to the annihilation rate is related to the statistical variance via $B_{\rm ann} \sim \frac{\langle n_{\rm dm}^2 \rangle}{\langle n_{\rm dm} \rangle^2}$
- 6 There is some scatter in N-body experiments: how to translate theoretical uncertainties to flux uncertainties ? what and where are the less ambiguous signatures, if so ?

The annihilation signal is integrated

Courtesy P. Salati

- 6 over a small solid angle around the line of sight for γ -rays and neutrinos
- over a rather small volume around the Earth for antimatter CRs, due to diffusion processes

 \implies **Boost factors are not the same !**

Few massive subhalos are expected in the MW:

- **By chance**, one or few could wander close to the Earth ...
- 6 Predictions: move a single (or few) object(s) around
- 6 Very small probability: fine tuned models !!! (~ $\mathcal{O}(10^{3-4})$ objects/MW volume)
- 6 Multimessenger analysis: check radio, γ -ray and antiproton constraints
- **6** Not a clean prediction of clumpiness \Rightarrow What about global effects?

Few massive subhalos are expected in the MW:

- **By chance**, one or few could wander close to the Earth ...
- 6 Predictions: move a single (or few) object(s) around
- 6 Very small probability: fine tuned models !!! (~ $\mathcal{O}(10^{3-4})$ objects/MW volume)
- 6 Multimessenger analysis: check radio, γ -ray and antiproton constraints
- **6** Not a clean prediction of clumpiness \Rightarrow What about global effects?

Few massive subhalos are expected in the MW:

- **By chance**, one or few could wander close to the Earth ...
- 6 Predictions: move a single (or few) object(s) around
- 6 Very small probability: fine tuned models !!! (~ $\mathcal{O}(10^{3-4})$ objects/MW volume)
- 6 Multimessenger analysis: check radio, γ -ray and antiproton constraints
- **6** Not a clean prediction of clumpiness \Rightarrow What about global effects?

Bringmann, Lavalle & Salati arXiv:0902.3665

Few massive subhalos are expected in the MW:

- **By chance**, one or few could wander close to the Earth ...
- In Predictions: move a single (or few) object(s) around
- 6 Very small probability: fine tuned models !!! (~ $\mathcal{O}(10^{3-4})$ objects/MW volume)
- 6 **Multimessenger analysis**: check radio, γ -ray and antiproton constraints
- Solution of second sec

Bringmann, Lavalle & Salati arXiv:0902.3665

Few massive subhalos are expected in the MW:

- 6 By chance, one or few could wander close to the Earth ...
- 6 Predictions: move a single (or few) object(s) around
- 6 Very small probability: fine tuned models !!! (~ $\mathcal{O}(10^{3-4})$ objects/MW volume)
- 6 Multimessenger analysis: check radio, γ -ray and antiproton constraints
- 6 Not a clean prediction of clumpiness \Rightarrow What about global effects?

Energy-dependent diffusion scales for e^+ and \overline{p}

9 e⁺'s lose energy: survey larger and larger volumes when detected at lower and lower

energies

→ importance of energy loss parameters: magnetic field, interstellar radiation field.

F's do not lose energy, but convective wind and spallation processes very efficient at low energy:

survey larger volume at high energies Lavalle, Nezri, Ling et al - PRD 78 (2008)

Energy-dependent diffusion scales for e^+ and \overline{p}

 e⁺'s lose energy: survey larger and larger volumes when detected at lower and lower energies

> → importance of energy loss parameters: magnetic field, interstellar radiation field.

6 p's do not lose energy, but convective wind and spallation processes very efficient at low energy:

survey larger volume at high energies Lavalle, Nezri, Ling et al - PRD 78 (2008)

Effective volume picture for the smooth contribution Inject a 200 GeV e^+ with $Q(r) = \rho^2(r) \propto r^{-2}$...

Simplest view of propagation

$$G \propto \exp\left(-\frac{|\vec{x}_S - \vec{x}_{\odot}|^2}{\lambda_D^2}\right)$$

with $\lambda_D = \sqrt{4K_0\Delta \tilde{t}} = f(E_S, E_D)$

 \rightarrow Detection volume scaling a sphere of radius λ_D

Figures: galactic plane at z=0 kpc x and y from -20 to 20 kpc Earth located at (x = 8, y = 0) kpc 2D plots of $G(\vec{x}, 200 \text{GeV} \rightarrow \tilde{x}_{\odot}, \text{E}) \times \rho^2$

Primary fluxes for a 200 GeV e^+ line / antiprotons

Configurations: $M_{\rm min} = 10^{-6} | 10^6 M_{\odot}$, $\alpha_{\rm m} = 2.0$, inner-NFW, B01, smooth-like space distribution (smooth = NFW)

Boost factors for a 200 GeV e^+ line / antiprotons

Boost factors for a 200 GeV e^+ line / antiprotons

 $M_{\rm min} = 10^{-6} M_{\odot}$, $\alpha_{\rm m} = 1.9$, inner-NFW vs Moore, B01, cored vs smooth-like space distribution (smooth = NFW)

- Clumps are predicted and observed in pure DM Nbody simulations: what will happen with baryons? (more efficient tidal disruption expected, but small scales should survive)
- Invoking a nearby clump = playing the Galactic Lottery
- **G** Global clumpiness effects cannot amplify the signal, $BOOST \leq 20$ for usual WIMP models (VLII analysis Bertone et al, in progress)
- 6 Complementarity with other messengers (multiwavelength photons and \bar{p}) is very important
- 6 Clumpiness can boost the Sommerfeld boost (Lattanzi & Silk, 2008 Lattanzi, Lavalle, Salati & Silk, in progress)
- If DM is made of WIMPs, clumps should be there ... seen or unseen ...
- Incomfortable to look for exotic explanations when standard astrophysics (e.g. pulsars) provides significant contributions: local e⁺s at the GeV scale may not be interesting anymore to look for DM

Prediction of the secondary e^+ flux and uncertanties

PAMELA: to predict the e^+ fraction, we need $e^-s!$

PAMELA: to predict the e^+ fraction, we need $e^-s!$

PAMELA: to predict the e^+ fraction, we need $e^-s!$

Sub-TeV Cosmic ray propagation in the Galaxy

cf. e.g. Berezinsky (1990)

6 Cylindrical diffusive halo :

 $R \sim 20 \mathrm{kpc}, \mathrm{L} \sim 3 \mathrm{kpc}$ diffusion off magnetic inhomogeneities, reacceleration.

- **Gaseous disc** ($h \sim 0.1 \mathrm{kpc}$) : spallation + convection upside down.
- **6 free parameters**: $K(E), L, R, V_C, V_A$ (Figure by D. Maurin)

cf. e.g. Berezinsky (1990)

- 6 Cylindrical diffusive halo : $R \sim 20 \text{kpc}, L \sim 3 \text{kpc}$ diffusion off magnetic inhomogeneities, reacceleration.
- 6 Gaseous disc ($h \sim 0.1 \text{kpc}$) : spallation + convection upside down.
- 6 free parameters: $K(E), L, R, V_C, V_A$ (Figure by D. Maurin)

Diffusion equation for $e^{+/-}$ or $par{p}$

 $e^{+/-}$, *cf.* Bulanov & Dogel 73, Baltz & Edsjö 98, Lavalle et al 07, Delahaye et al 08 Nuclei, *cf.* Strong et al (98-08), Maurin et al (01-08)

$$\partial_{t} \frac{dn}{dE} = Q(E, \vec{x}, t) \\ + \left\{ \vec{\nabla} (K(E, \vec{x}) \vec{\nabla} - \vec{V}_{c}) \right\} \frac{dn}{dE} \\ - \left\{ \partial_{E} \left(\frac{dE}{dt} - \partial_{E} E^{2} K_{pp} \partial_{p} E^{-2} \right) \right\} \frac{dn}{dE} \\ - \left\{ \Gamma_{spal} \right\} \frac{dn}{dE}$$

source: injected spectrum

spatial current: diffusion and convection $K(E) = K_0 \left(\frac{E}{E_0}\right)^{\alpha}$ $\vec{V_c}(z) = sign(z) \times V_c$

Energy losses and reacceleration

spallation (nuclei)

Uncertainties and degeneracies in parameters (Maurin et al 01)

(Complementary & full numerical: Galprop, Strong et al)

Many-object method:

Define the phase space of substructures

The phase space distribution depends on two main quantities:

- 6 the **spatial distribution** of objects
- 6 the **luminosity function** of objects

$$\frac{dn_{\rm cl}}{d\mathcal{L}}(\mathcal{L}, \vec{x}) = \frac{dN_{\rm cl}}{dV \, d\mathcal{L}}(\mathcal{L}, \vec{x}) = N_0 \times \frac{d\mathcal{P}}{dV}(\vec{x}) \times \frac{d\mathcal{P}}{d\mathcal{L}}(\mathcal{L}, \vec{x})$$

Computing the odds of the Galactic Lottery: Identical clumps tracking the smooth halo

Computing the odds of the Galactic Lottery: Identical clumps tracking the smooth halo

Boost for antimatter CRs:

- 6 Long believed to be simple rescaling of fluxes ...
- 6 This picture is wrong. Due to propagation effects, *boost* is a non-trivial function of energy (J.L, Pochon, Salati & Taillet, 2006).
- 6 Variance depends on the number of clumps within the volume bounded by diffusion length λ_D : increases when the population when λ_D decreases $(\sim 1/\sqrt{N_{\rm eff}})$.
- 6 The recipe applies to any kind of sources
- In the second second

Cosmological sub-halos:

Results of the state-of-the-art N-body experiments

Cosmological sub-halos:

Results of the state-of-the-art N-body experiments

Luminosity profiles: effects of α_m

Luminosity profiles: effects of α_m

Luminosity profiles: effects of α_m

Luminosity profiles: effects of dP/dV

