Results from the PAMELA space experiment

Roberta Sparvoli

University of Rome "Tor Vergata" and INFN

PAMELA science

PAMELA is a Space Observatory @ 1AU

- •Search for dark matter
- •Search for primordial antimatter
- ... but also:
- Study of cosmic-ray origin and propagation
 Study of solar physics and solar modulation
 Study of terrestrial magnetosphere

PAMELA

PAMELA detectors

Main requirements \rightarrow high-sensitivity antiparticle identification and precise momentum measure

GF: 21.5 cm² sr Mass: 470 kg Size: 130x70x70 cm³ Power Budget: 360 W

The Resurs DK-1 spacecraft

PAMELA design performance

 \rightarrow Unprecedented statistics and new energy range for cosmic ray physics

(e.g. contemporary antiproton and positron maximum energy ~ 40 GeV)

 \rightarrow Simultaneous measurements of many species

PAMELA milestones

Launch from Baikonur → June 15th 2006, 0800 UTC.

'First light' → June 21st 2006, 0300 UTC.

- Detectors operated as expected after launch
- Different trigger and hardware configurations evaluated

→ PAMELA in continuous data-taking mode since commissioning phase, ended on July 11th 2006

Main antenna in NTsOMZ

Trigger rate* $\sim 25 \text{Hz}$ Fraction of live time* $\sim 73\%$ Event size (compressed mode) $\sim 5 \text{kB}$ 25 Hz x 5 kB/ev $\rightarrow \sim 10 \text{ GB/day}$ (*outside radiation belts)

Till today: ~1044 days of data taking ~13 TByte of raw data downlinked ~10⁹ triggers recorded and analysed

PAMELA results: Antiprotons

High-energy antiproton analysis

- Analyzed data July 2006 February 2008 (~500 days)
- Collected triggers $\sim 10^8$

• Identified ~ 10⁷ protons and ~ 10³ antiprotons between 1.5 and 100 GeV (6 p-bar between 50 and 100 GeV)

- Antiproton/proton identification:
 - rigidity (R) \rightarrow SPE
 - $|Z| = 1 (dE/dx vs R) \rightarrow SPE\&ToF$
 - β vs R consistent with $M_p \rightarrow ToF$
 - p-bar/p separation (charge sign) \rightarrow SPE
 - p-bar/e⁻ (and p/e⁺) separation \rightarrow CALO
- Dominant background → **spillover protons**:
 - finite deflection resolution of the SPE ⇒ wrong assignment of charge-sign @ high energy
 - proton spectrum harder than antiproton \Rightarrow p/p-bar increase for increasing energy (10³ @1GV 10⁴ @100GV)
 - → Required strong SPE selection

Antiproton identification

PAMELA: Antiproton-to-proton ratio

PAMELA: Antiproton Flux

PAMELA results: Positrons

High-energy positron analysis

- Analyzed data July 2006 February 2008 (~500 days)
- Collected triggers $\sim 10^8$
- Identified ~ 150 10³ electrons and ~ 9.5 10³ positrons between 1.5 and 100 GeV (11 positrons above 65 GeV)
- Electron/positron identification:
 - rigidity (R) \rightarrow SPE
 - $|Z| = 1 (dE/dx = MIP) \rightarrow SPE\&ToF$
 - $\beta = 1 \rightarrow \text{ToF}$
 - e^{-}/e^{+} separation (charge sign) \rightarrow SPE
 - e^+/p (and e^-/p -bar) separation \rightarrow CALO
- Dominant background → interacting protons:
 - fluctuations in hadronic shower development $\Rightarrow \pi_0 \rightarrow \gamma \gamma$ might mimic pure em showers
 - proton spectrum harder than positron $\Rightarrow p/e^+$ increase for increasing energy (10³ @1GV 10⁴ @100GV)
 - → Required strong CALO selection

Positron identification with CALO

- Identification based on:
 - Shower topology (lateral and longitudinal profile, shower starting point)
 - Total detected energy (energy-rigidity match)
- Analysis key points:
 - Tuning/check of selection criteria with:
 - test-beam data
 - simulation
 - flight data \rightarrow dE/dx from SPE & neutron yield from ND
 - Selection of pure proton sample from flight data ("pre-sampler" method):
 - Background-suppression method
 - Background-estimation method

51 GV positron

80 GV proton

Final results make <u>NO USE</u> of test-beam and/or simulation calibrations. The measurement is based only on flight data with the <u>background-estimation</u> method

+ Roberta Sparvoli + May 4th, 2009 + Tango in Paris

Positron identification

Positron identification

Check of calorimeter selection

Flight data Rigidity: 20-30 GV Test beam data Momentum: 50GeV/c events 250 250 150 50 Fraction of charge Normalized number of event P released along the of calorimeter track 0.16 0.14 Number 0.14 **e**-**Constraints on:** 0.1 Fraction of energy along the track 0.08 **Energy-momentum** match Normalized number of events 0.06 **e**+ Shower starting-point 0.04 0.02 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 Fraction of energy along the track Fraction of energy along the track

Check of calorimeter selection

Check of calorimeter selection

Energy loss in silicon tracker $\longrightarrow -\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} \right]$

• Top: positive (mostly p) and negative events (mostly e⁻)

• Bottom: positive events identified as p and e⁺ by trasversal profile method

Relativistic rise

Only 2% of electrons and positrons do not interact in the first 2 CALO planes

Proton background evaluation

Proton background evaluation

Positron selection with calorimeter

PAMELA: Positron fraction

PAMELA work in progress: Electron flux

PAMELA positron excess might be connected with ATIC electron+positron structures (next talks)

PAMELA electron flux measurements

Key points wrt other experiments (ATIC, HESS, FERMI) :

- ★ Combination of CALO and SPECTROMETER allow energy selfcalibration in flight → no dependence on ground calibrations or MC simulations
- ♦ Very deep CALO (16 X₀) → containment of the shower maximum beyond 1 TeV
- Neutron detector help proton rejection, especially at high energy
- No atmospheric contamination

But ..

 \clubsuit Smaller acceptance \rightarrow lower statistics

PAMELA work in progress: Protons and light nuclei

Light nuclei

Statistics collected until December 2008:

- ✤ 120.000 C nuclei
- ✤ 45.000 B nuclei
- 16.000 Be nuclei
- * 30.000 Li nuclei

between 200 MeV/n and 100 GeV/n, with quite stringent selection cuts (30% efficiency and 0.01% contamination among species).

Secondary/Primary ratios in progress !

PAMELA is also studying ...

Solar physics

Magnetospheric physics

Work in progress !! No time to talk about it ..

The future of PAMELA (I)

The PAMELA Collaboration made official request for prolongation of the mission until end 2011.

* High energy antiprotons *

- Estimated increase of the current statistics by 100%;
- Release of selection cuts (very strict until now):

-> possibility to reach the nominal limit of 200 GeV

6.5 antiproton events between 100-200 GeV expected by end 2011

The future of PAMELA (II)

* High energy positrons and electrons *

- Estimated increase of the current statistics by 100%;
- Release of selection cuts (very strict until now):

→ possibility to go beyond 100 GeV
 → possibility to perform *anisotropy studies* of the incoming direction of e+ and e-, to study astrophysics sources (few percent level above 10 GeV)

Most updated PAMELA results will be shown at the

which will take place on the <u>11th&12th of May, 2009</u> in Rome

You are all welcome !!