The 3D MHD Effects For A Core Collapse Supernova Explosion

Hayato MIKAMI Chiba Univ.

coresearcher: Y. Sato(Chiba Univ.) T. Hanawa(Chiba Univ.) T. Matsumoto(Hosei Univ.)

Outline

The paper accepted by ApJ Main result Parameter dependenc Technical issues Source term Carbuncle instability

Solution 30 MHD simulation with Sfumato(AMR code)

Introduction

- Three-Dimensional Magnetohydrodynamical Simulations Of A Core-Collapse Supernova
 accepted by ApJ
 - 2008 August 20.
 - You can get
 - astro-ph: 0804.3700
 - http://www.astro.phys.s.chiba-u.ac.jp/~mikami/research/

The Astrophysical Journal, 683:000–000, 2008 August 20

2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

COllapse Dimensional Macherohydrody Mamical Simulation OF A CORE-COLLAPSE SUPERNOVA

Graduate School of Science, Chiba University, 133 twist age ku, Chiba 263-8522, Japan; mik Dipoler, jets

OMOAKI MATSUMOTO

Faculty of Humanity and Environment, Hosei University, Fujimi, Chiyoda-ka, Tokyo 102-8160, Japan

AND

TOMOYUKI HANAWA Center for Frontier Science, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan Received 2007 August 24; accepted 2008 April 21

Model

Ideal MHD Equation

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) &= 0\\ \frac{\partial v}{\partial t} + (v \cdot \nabla)v + \frac{1}{\rho} \left[\nabla P - \left(\frac{\nabla \times B}{4\pi} \right) \times B \right] - g &= 0\\ \frac{\partial B}{\partial t} &= \nabla \times (v \times B)\\ g &= -\nabla \Phi \end{aligned}$$
Self Gravity

$$\Delta \Phi &= 4\pi G\rho \end{aligned}$$

EOS
Simplified
Takahara & Sato. 1984

$$P = P_{c} + P_{t}$$
$$P_{t} = \frac{\rho \varepsilon_{t}}{\gamma_{t} - 1}$$
$$P_{c} = K_{i} \left(\frac{\rho}{\rho_{i}}\right)^{\gamma_{i}}$$

Method

Nested Grid Method
 8 concentric grids × 64^3 cells
 Largest grid : 3300 km on a side
 Finest resolution : 410 m
 Roe-type Scheme
 A shock capturing scheme

Inicial Condition

15 Mo star
 Woosley et al. 2002
 ρ₀ = 6.8×10⁹ g cm⁻³

B Field

- Uniform
- Dipole-like outside
- $B_0 = 2. \times 10^{12} \,\mathrm{G}$
- Rotation
- Differential rotation law $\Omega_0(r) = \frac{\Omega_c a^2}{r^2 + a^2}$ \Omega_c = 1.2 s^{-1}

 Inclination angle

 \Omega_g = 60^{\circ}

Overview

The high velocity jets emerge from r ~ 60 km

Bipolar Jets

846 km(3rd)

$Jets(2.\times10^4 \text{ km s}^{-1}) \& downflow(1.\times10^4 \text{ km s}^{-1})$

The direction is along the initial rotation axis.

Evolution of B Energy

Evolution of K_{rad} Energy

Jet lag & Alfven transit time

The lag between the bounce and jet ejection is related to the Alfven transit time.

- the foot-point of the jets, $r_j \sim 60$ km
- If the B field is twisted in a deep interior of the PNS,
 - the lag \rightarrow longer,
 - B energy \rightarrow larger,
 - jets → stronger

Dependence on Rotation

- When Ω_0 is faster, *B* field is more tightly twisted.
- When Ω_0 is faster, v_r rises earlier and stays at a high level.

Dependence on B Field

- When B_0 is smaller, B field is more tightly twisted.
- When B_0 is larger, v_r rises earlier and stays at a high level.

Dependence on inclination

- When θ_{Ω} is larger, magnetic multi-layers is taller.
- When $\boldsymbol{\theta}_{\Omega}$ is larger, vr rises earlier.

Technical Issues

- Source term of gravity
 Cell center : spurious heating
 Cell surface $\rho v_i g_i \rightarrow \frac{1}{2} \left(f_{i-1/2} + f_{i+1/2} \right) g_i$
- Carbuncle Instability
 - additional viscosity : only in the regions where the characteristics of either fast or slow wave converges (Hanawa et al. 2008)

Next step

- Motivation
 - Jets structure
 - Magnetic multi-layer
 - MRI : observed with a spatial resolution of ~120 m (Etienne 2007).
- Sfumato (T. Matsumoto 2007)
 - AMR code for star formation
 - Roe type MHD scheme
 - Self gravity
 - Divergence cleaning
 - Dedner et al. 2002
- Performance
 - Cray XT4 : 64 PE
 - With a resolution of 100 m, 75 hours / 40 ms after core

dissipated propagating outward for coarser grid

2 ms⁻¹,10¹⁵ G, 10¹⁴ g cm⁻³

Conclusions

- The new feature in 3D is B multi-layers. It is formed when the magnetic field is split monopole like and inclined with repect to the rotation axis.
 - **B** multi-layer more tightly when B0 \downarrow or $\Omega 0$ **1**.
- MHD bipolar jets
 - Jets are ejected along the rotation axis.
 - B energy is stored on the sphere of r = 20 km and jets are launched from r = 60 km.
 - = Jets emerge earlier when B0 \uparrow , $\Omega 0 \uparrow$, or $\theta \Omega \uparrow$.

Coming soon, the 3D MHD simulation for CCSN with AMR.