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Overview

● Magnetic fields on SNe

● Physics of the MRI

● MRI simulations: global vs. local

● A set of local (semi-global) simulations
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Effects of magnetic fields

● transport of angular momentum from the centre to the 
surrounding matter
-> affecting structure and rotation of the PNS

● conversion of rotational into thermal energy
-> imparting energy to gas at the threshold of explosion

● shaping the ejecta: jet-like outflows

● MHD explosions possible?
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Effects of magnetic fields

● transport of angular momentum from the centre to the 
surrounding matter
-> affecting structure and rotation of the PNS

● conversion of rotational into thermal energy
-> imparting energy to gas at the threshold of explosion

● shaping the ejecta: jet-like outflows

● MHD explosions possible?

● However: strong fields are required
> 1014 G after bounce
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Pre-collapse magnetic fields

● recent stellar-evolution models take into account rotation 
and magnetic braking during pre-SN phases (e.g., Tayler-
Spruit dynamo; Heger, Woosley, & Spruit 2005ff, Maeder 
& Meynet 2003ff)

● comparably weak fields, slow rotation

● typical values: 109 G toroidal, 106 G poloidal field

● corresponding post-collapse fields are dynamically 
negligible

● faster rotation, stronger fields for subclasses of SNe?
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● compressional amplifica-
tion feeds off kinetic en-
ergy of infall

● e
mag

 ~ - b2/2 div v 

● gives a factor of 100...1000 
during collapse

● purely passive, irrespective 
of field strength and geo-
metry

Field amplification mechanisms



4. VII. 2008 Asymmetric Instabilities in Supernovae

Field amplification mechanisms

● winding by differential rota-
tion amplifies toroidal 
component from a seed 
poloidal field

● energy source: differential 
rotation

● requires poloidal field

● linear in time; time scale 
set by rotational period
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● MHD version of HD in-
stabilities, e.g., 

– convection

– SASI
● turbulent dynamo

– energy source: turbu-
lent kinetic energy; tur-
bulence excited by dif-
ferent effects

– genuinely 3d effect

Field amplification mechanisms



4. VII. 2008 Asymmetric Instabilities in Supernovae

Field amplification mechanisms

● magneto-rotational instabil-
ity

● energy source: differential 
rotation

● instability criteria likely ful-
filled

● local linear instability

● leading to exponential 
growth and turbulence
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● Balbus & Hawley et multi alii (1991ff) analysed the MRI in 
discs

● local, linear instability of differentially rotating fluids

● instability criterion: negative gradient of angular velocity

● criterion does not depend on the field strength

The magneto-rotational instability
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● instability of the Alfvén 
and slow modes

● runaway of angular-
momentum transport 
along field lines

● exponential growth, 
time scale set by the ro-
tational period

The magneto-rotational instability
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● main application: accretion discs

● Keplerian rotation unstable against MRI (but Rayleigh-
stable)

● MRI-driven turbulence can explain (Shakura-Sunyaev-
type) disc viscosity

● large mean Maxwell stresses transport angular-momentum 
outward (HD stresses lead to inward transport)

● well established, but still open problems, mostly centred 
around the mean stress and its dependence on the hydro-
dynamic state of the disc

The magneto-rotational instability
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● post-collapse cores are rotating differentially (if at all) and 
fulfil the MRI instability criterion (Akiyama et al., 2001)

● possible saturation level estimated: > 1015 G

● MRI growth observed in a few simulations

● However: still only limited results

– too strong initial fields

– few detailed investigations
● questions:

– how is the growth of the MRI modified?

– what is the saturation level?

The MRI in supernovae
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● large difference of SN cores from accretion discs limit ap-
plicability of results from accretion discs to cores

– sub-Keplerian rotation

– importance of pressure forces

– thermal stratification and different microphysics

– different global dynamics; competing with rapid global 
evolution

● modifications due to thermal stratification: stabilisation in 
radiative, destabilisation in convective regions

Physical and technical problems
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Physical and technical problems

diff. rotation dominantentropy gradient dominant

MRI dispersion relation based on Balbus (1995)

long wavelength

short wavelength
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● dispersion relation imposes severe resolution problem
impossible to resolve properly the MRI

● relevant physical length scales

– global scales:   101 km ... 103 km

– scale heights of physical quantities: 1 km

Hydrodynamics

Physical and technical problems
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● dispersion relation imposes severe resolution problem
impossible to resolve properly the MRI

● relevant physical length scales

– global scales:   101 km ... 103 km

– scale heights of physical quantities: 1 km

– MRI wavelength                                      1 cm ... 10 m

– viscous and resistive scales              ≪ 1 cm

Physical and technical problems
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● MRI differs strongly between 2d and 3d => 3d necessary 

● numerical grid can cover a factor of ~ 102..4 in length

● impossible to cover all scales appropriately

● where to place the numerical grid?

– global simulations
do not resolve the MRI properly, but follow global dy-
namics

Physical and technical problems
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● MRI differs strongly between 2d and 3d => 3d necessary 

● numerical grid can cover a factor of ~ 102..4 in length

● impossible to cover all scales appropriately

● where to place the numerical grid?

– local simulations
(more or less) well resolved, but no global dynamics 

Physical and technical problems



4. VII. 2008 Asymmetric Instabilities in Supernovae

● simulate a large region of the core at a fairly coarse resolu-
tion

– 2d axisymmetric or 3d

– include detailed physics

– use detailed initial models
● MRI found; study its implications for dynamics

● BUT: MRI is underresolved
=> use stronger initial fields, relying on efficient amplifica-
tion

Global simulations
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● simulate a small box with a finer resolution

– 2d, 3d Cartesian/spherical/cylindrical

– simplified physics

– representative initial conditions

– choice of boundary conditions may be crucial
periodic (shearing box), reflecting, outflow

● able to resolve the MRI for weak initial fields

● semi-global models: local with a physical scale

Local simulations
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● problems: neglecting global dynamics may alter results

– large parameter space
● background models (rotation, stratification)
● initial field strength and geometry
● transport coefficients
● grid size
● resolution
● boundary conditions

– unclear dependence of the saturation on the numerical 
parameters, e.g., grid size, boundary treatment
(Fromang et al., 2007; Umurhan & Regev, 2008)

Local simulations
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● small box of size 0.5, ..., 4 km and resolution 2.5, ..., 20 m 
in an idealised model of a post-collapse core

– simplified EOS

– no neutrino transport
● different initial magnetic field strength and geometry

– initial fields correspond to 1010..11 G before collapse

– uniform fields and fields with zero net flux through the 
box surface

– shearing-disc boundary conditions in radius, otherwise 
periodic; radial damping may set a physical scale

Our setup
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● high-resolution finite-volume schemes

● high-order reconstruction:

– monotonicity-preserving schemes (Suresh & Huynh 
1997): MP5/7/9

– the weighted essentially non-oscillatory scheme of Levy 
et al. (2002): WENO4

● approximate Riemann solvers based on the MUSTA 
method (Toro & Titarev 2006)

– a predictor-corrector scheme minimising the numerical 
viscosity of approximate solvers

The numerical method
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● divergence of the magnetic field:

– constraint-transport scheme (Evans & Hawley 1988)
● coupling of magnetic field and hydro variables:

– involves multiple mapping between staggered grids

– upwind CT scheme (cf. Londrillo & Del Zanna, 2000)
● tested with different standard tests

● time stepping: Runge-Kutta of 2nd or 3rd order

● overall accuracy of the method: approx. 3rd -- 4th order

● Fortran 90, OpenMP and MPI parallel 

The numerical method
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● We find growth rates in 
agreement with linear 
analysis, if sufficiently 
well resolved

Results: growth rates

early evolution of the magnetic energy 
in a local MRI simulation
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Results: growth rates

comparison of numerical 
(symbols) and theoretical 
(lines) growth rates
for different initial rotational 
profiles, different resolutions, 
and different initial fields

Once MRI wavelength is re-
solved, we find convergence 
of growth rates
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● characteristic flow pattern: channel modes

● pairs of upflows and downflows

● predominantely radial field created in the flows

● width set by the initial field

● exact solutions of full MHD equations, but may be unstable 
to parasitic instabilities (Goodman & Xu, 1994)

Results: channel modes
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Results: channel modes
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Results: channel modes
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● channels may be disrupted 

– reconnection of field lines in, e.g., tearing modes occur-
ing in current sheets

– growth of these modes depends on thickness and 
length of the current sheet:

● stable for short sheets
● fast growth for long sheets

● => saturation and turbulence

Results: channel modes
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● fast growth for long sheets

● => saturation and turbulence

● reorganisation of channels possible by merging of adjacent 
flows

Results: channel modes
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Results: channel modes
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● saturation depends an various factors; 
as a first step, we concentrate on numerical ones:

– box size and aspect ratio

– boundary conditions

– resolution
● for given initial field (channel thickness), the MRI has a lim-

it set by the stability of associated current sheets

● earlier saturation may occur when the boundaries of the 
system interfer

● saturation can be prevented in periodic boxes

Results: channel modes
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Results: channel modes
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● MRI is suppressed in convectively stable regions

● convectively unstable regions:

– “standard” MRI modes for fast differential rotation

– magnetoconvection for dominating entropy gradient

– magneto-bouyant modes for fast rigid rotation
● distinguishing parameters are rotational and bouyancy fre-

quencies

Results: entropy gradients
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● several models 

● 3d effects important for, e.g., dynamo

● further numerical parameter: aspect ratio of the box

– “cubic” boxes: same as axisymmetry

– “wide” boxes: turbulence develops

Results: axisymmetry vs. 3d
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Magnetic field strength of a cubic 3d model

t = 11 ms: channel flows grow

t = 35 ms: chan-
nels are disrupted

t = 52 ms: reappearance 
of coherent flows
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Magnetic field strength of a wide 3d model

coherent flow patterns 
may develop, but are 
less prominent
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● treatment of MRI hindered by resolution requirements

● combination of global and local simulations suggested

● a set of local simulations performed

– confirm efficient amplification of magnetic stresses by 
the MRI, turbulence, and angular-momentum transport

– still preliminary analysis, leaving open several issues
● further numerical factors
● dependence on physics, e.g., the initial conditions
● effects of neglected physics

Conclusions


