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Overview

● Introduction
● The Isotropic Diffusion Source Approximation
● Results
● Conclusions
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Part I – Introduction
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The Supernova Problem
● Simulations of core-collapse supernovae in 

general do not show robust explosions
– The expanding shockwave stalls around 200 

kilometres

– Missing some input physics or

– Restricted dimensionality

● Suggestions relate to: 
– Neutrino heating 

– Convection

– Oscillating neutron star 
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Convection

● Matter near PNS is heated until buoyancy 
carries it to low density regions at large radii

● Essentially a Carnot cycle is established where 
convection drives thermal transport

● High efficiency due to large temperature 
contrast

● (e.g. Herant et al 1994)
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NS oscillations

● Accreting PNS oscillates
● Excites core g-mode oscillations
● This acoustic power may be sufficient to cause 

an  explosion
● (e.g. Burrows et al, 2006)



Supernova models with neutrino diffusion 7

Neutrino Heating

● Neutrinos are produced in the proto-neutron 
star

● These neutrinos may be  absorbed behind the 
stalled shock

● This may heat matter behind the shock and 
restarts the explosion

● (e.g. Colgate & White 1966; Bethe & Wilson 1985)
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Simulation Requirements

● Desirable to have a computer model which 
includes all relevant physics:
– Magnetohydrodynamics

– Gravity

– Neutrino Transport
● Including interaction with the fluid
● Spectral

– Weak interaction rates

– Nuclear equation of state 
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Simulation Requirements II

● SN need to be modelled in three dimensions
– Convection, for example, can only properly be 

modelled in 3D

– Accretion
● Accretion flow in 2D is an “accretion torus”

– Magnetic fields
● e.g. dynamo, Lorentz force
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Simulation Requirements III

● Radiation hydrodynamics is computationally 
demanding
– Direct solution of the Boltzmann transport equation 

is only feasible in one dimension

● Approximations are hence required
– Grey neutrino transport (e.g. Fryer & Warren 2004, 

Scheck et al. 2004)

– Parameterisations (e.g. Ott et al 2007, Scheidegger 
et al 2007)
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Spherically symmetric Boltzmann 
Equation
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Part II – The Isotropic Diffusion Source 
Approximation
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Isotropic Diffusion Source 
Approximation

● Liebendörfer, Whitehouse and Fischer, 2007
● Goal is to implement the dominant features of 

radiative transfer efficiently and consistently
● To do this we decompose the problem into 

different subdomains and apply appropriate 
algorithms for each
– Each subdomain can use a different method
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Decomposition
● Decompose the distribution function f of 

transported particles

f = f t + f s

     f t   =    Trapped particles – opaque regime

     f s   = Streaming particles – transparent regime
● The two components are evolved separately:
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Trapped Component

● Assumptions:
– Distribution function  f t is isotropic

– Source function Σ is isotropic

● Angular integration reduces Boltzmann eqn to
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Trapped Component II

● Evolution of the trapped particles must 
reproduce correct diffusion limit
– Particles slowly drain or replenish in a fluid element 

● Needs to be included in Σ term
● Comparison with diffusion gives us our diffusion 

source Σ
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The Diffusion Source

● LHS is the diffusion source
● First term on RHS is diffusive
● Last term on RHS is absorption of streaming 

particles
● Source is limited by emissivity to prevent 

unphysical particle fluxes in transparent regime 
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Streaming Component

● Weakly coupled to matter
– Laboratory frame is more convenient

● Evolution equation becomes

● At present evolved using steady-state 
approximation
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A Fluid Element

Emission

Absorption

Particles leaving 
fluid element

Absorbed streaming
particles
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Coupling to Hydrodynamics

In 3D data storage is a problem

(600 x 600 x 600 zones) x (4 neutrino species) x 
(12 energy bins )  =   easily 10x more memory 
than a normal MHD simulation
– Not practical on today's computers

– Cannot evolve distribution functions with 
hydrodynamics
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Coupling to Hydrodynamics II

● Use equilibrium conditions to describe  f t

● Use a thermal spectrum for  f t

● This assumption is only made for trapped 
particles within a fluid element

● Particles transported between fluid elements 
retain their spectral information
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Neutrino Fraction & Energy
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Variables stored in 3D
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Verification in one dimension

● 1 ms and 3 ms
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Verification in one dimension II

● 30 ms and 100 ms
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Verification in one dimension III

● 150 ms and 300 ms
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Verification in one dimension IV
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1-D Energy Spectrum

Opaque Transparent
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ELEPHANT

● Elegant
● Parallel
● Hydrodynamics
● With Approximate 

Neutrino Transport
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Elephant

● 3-D MHD code
– Parallelised using MPI

– This simulation 300 x 300 x 300 zones at 2km 
resolution 

– Code does not include AMR
● Grid with non-constant spacing is being developed

– Up to 600x600x600 @ 1km tested

– Lattimer & Swesty EoS

– General Relativistic gravitational potential
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Elephant – IDSA Current Status

● Added neutrino diffusion 
–  f t  only 

– Streaming component is currently under 
development

– Effectively all streaming particles leave the 
computational domain with no further effect on the 
simulation

● Makes simulation pessimistic
● Electron neutrinos/anti-neutrinos only
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Part III – Results
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Neutrino Diffusion
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Part IV – Conclusions
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Neutrino heating

● Hydrodynamic conditions are spherically 
averaged

● These conditions are then used to generate the 
fluxes in a radial manner

● The fluxes are then used to generate a 
spherical distribution function f s

● The 3-D hydrodynamics then takes this f s and 
uses it for its local calculations of neutrino 
transport
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Neutrino heating II

● In the future each 3-D fluid element will 
calculate a local source

● This source will then be included in the relevant 
radial flux bin

● And then the distribution function will be 
propagated back to the 3D level
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Neutrino heating III

● At present doesn't work 
– Probably due to badly resolved mean free paths in 

the spherically-averaged hydrodynamics

– Work in progress
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Flow chart of Code
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Other Applications

● Advantage of supernovae is that c
s
 ~ c

– So timesteps for radiation and hydro are of similar 
size

● In most other areas of astrophysics in general  
c

s
 << c

● Radiation transport typically requires some sort 
of implicit method for these cases

● IDSA would require an implicit diffusion solver
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Future Work

● Get heating working
● Add mu and tau neutrinos
● Incorporate recent work done on unequally 

spaced grid
● Improve streaming particles to use something 

more sophisticated than steady-state 
approximation

● Poisson solver for gravity
– General relativity?
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Conclusions

● Isotropic Diffusion Source Approximation is a 
viable efficient way of including radiation 
transport in 3D simulations

● Consistent with spherically symmetric 
Boltzmann transport including the same physics

● Practical way of implementing neutrino 
transport for supernovae in 3D

● Would have applications in many areas of 
astrophysics
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What is a Supernova?

● Huge stellar explosion
– May outshine a galaxy for a brief period

● Explosion expels much of a stars material
● Leaves behind a supernova remnant
● Two different triggering mechanisms

– One is sudden switching on of nuclear burning

– The other is sudden switching off of nuclear burning
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Motivation

● Supernovae are laboratories for exotic physics
● Primary site of heavy element nucleosynthesis
● Type Ia supernovae are used as distance 

indicators of far-off galaxies
● Shockwaves from supernovae may trigger the 

next generation of star formation
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A Supernovae Bestiary
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Observational History

● First supernova detection 
possibly SN 185
– Observed in China in 185 CE

● Most recent observed 
galactic supernova SN 
1604

● Both thought to be Type Ia 
supernovae

NASA/ESA
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Type Ia Supernovae

● Accretion onto a C-O white dwarf 
● As it approaches the Chandrasekhar mass 

central density & temperature core begins 
carbon fusion

● Within a few seconds most of the matter in the 
WD undergoes fusion, producing enough 
energy to unbind the star 
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Type II Supernovae

● Very massive (>8 M
sun

) 

star burns core into Fe
● Cannot produce energy 

by fusing Fe
● Internal energy source is 

lost causing a loss of 
pressure support

Crab Nebula, 
probably remnant of SN 1054 
(NASA/ESA)
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Type II Supernovae

● Gravitational collapse
– Nuclear forces dominate in the core

● Outer layers bounce on proto-neutron star
– Explodes as a supernova after a few 100ms
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Type II Supernovae

Image by Simon Scheidegger 
based on one from Sanjay Reddy
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SN 1987A

● First supernova visible to 
the naked eye since SN 
1604

● Progenitor star probably 
Sanduleak -69o 202a

● B3 I blue supergiant

● L ~ 4 x 1038 erg/s

● Main sequence mass 
probably 16-22 M

sun

● Located in the LMC
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IDS is not FLD

● IDS Differs from FLD
– Agree in diffusion limit

– FLD assumes flux is parallel to intensity gradient
● Wrong in transparent regime

– IDS takes flux as being directed away from source

– IDS allows separate approximations for diffusive 
and streaming parts, e.g.

● Co-moving frame vs laboratory frame
● Thermal equilibrium vs stationary state


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

